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Presentación

Este documento fue desarrollado por la Coordinación de Investigación y Vin-

culación de la Maestría en Matemática de la UNAH, presenta artículos di-

vulgativos y de investigación desarrollados por estudiantes del Seminario de

Investigación de Estadística Matemática de la quinta promoción del progra-

ma, cursos desarrollado durante el tercer período académico del año 2025.

Se abarca una temática bastante amplia: Regresión cuantílica, Pre-training,

Redes neuronales convolucionales, Random forest, Teoria de valores extre-

mos, Modelos VAR, Estadística robusta, Inferencia causal y Modelado Es-

pacial; en algunos de los trabajos se desarrolló una revisión bibliográfica de

trabajos pertinentes y se resumió según lo comprendido por cada autor, en

otros casos, se realizó avances en sus trabajos de tesis que incluso incluyen

experimentación.

El objetivo principal de desarrollar este documento es que a futuro, en base

a la experiencia obtenida y después de tener varias experiencias similares, se

transforme en una revista científica de Matemáticas, cuestión que requiere

de mucho trabajo por parte del equipo de profesores investigadores del pro-

grama y otros colaboradores externos; además de ser una muestra de que

en el programa de maestría en Matemáticas y por parte de la Coordinación

de Investigación y Vinculación, se está desarrollando en los estudiantes un

espíritu investigador.



Todas las revisiones bibliográficas y temas aquí presentados se encasillan

dentro de las líneas de investigación de la UNAH, entre los temas priori-

tarios abarcados se encuentran: ciencia, cambio climático y vulnerabilidad,

productividad, infraestructura y desarrollo territorial. Esto evidencia que la

Coordinación de Investigación y Vinculación de la Maestría en Matemática

está sumamente interesada en colaborar con las prioridades investigativas de

la universidad y mantiene un compromiso con vincularse con la sociedad.

Enero del año 2026, Ciudad Universitaria

Tegucigalpa, M.D.C., Honduras
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REGRESIÓN CUANTÍLICA: UNA BREVE REVISIÓN
BIBLIOGRÁFICA DE SU EVOLUCIÓN Y MÉTODOS

ERLIN VASQUEZ

Resumen. La Regresión Cuantílica es una extensión de la regresión lineal que
permite relajar los supuestos de normalidad y homocedasticidad. Fue propues-
ta por Koenker & Bassett, y el objetivo es estimar los cuantiles condicionales
de la variable de respuesta dadas las covariables. Se explica como este método
extiende la regresión lineal al permitir el estudio de cualquier cuantil de la
distribución condicional. El siguiente trabajo detalla la fundamentación ma-
temática de los cuantiles, la formulación del problema de regresión cuantílica
y la inclusión de técnicas de regularización para controlar la complejidad del
modelo y seleccionar variables relevantes, como el LASSO. Ademas, expone
principales estrategias computacionales como el ADMM y métodos de punto
interior para resolver estos problemas en alta dimension, acompañando la re-
visión con simulaciones que ilustran los beneficios metodológicos frente a la
regresión OLS convencional. Se destaca que la regresión cuantílica penalizada
constituye un marco robusto y flexible para el análisis estadístico, permitien-
do caracterizar con mayor precisión la distribución condicional completa de
la variable de respuesta. Su robustez ante valores atípicos (outliers), la hace
un método útil en modelado de riesgos financieros, y es aplicable a economía,
ciencias sociales, medicina donde la heterogeneidad y los efectos no lineales
son comunes.

Abstract. Quantile Regression is an extension of linear regression that rela-
xes the assumptions of normality and homoscedasticity. It was proposed by
Koenker & Bassett, and its objective is to estimate the conditional quantiles
of the response variable given the covariates. It is explained how this method
extends linear regression by allowing the study of any quantile of the conditio-
nal distribution. The following work details the mathematical foundations of
quantiles, the formulation of the quantile regression problem, and the inclusion
of regularization techniques to control model complexity and select relevant
variables, such as LASSO. In addition, it presents the main computational
strategies such as ADMM and interior-point methods to solve these problems
in high dimensions, accompanied by simulations that illustrate the methodolo-
gical benefits compared to conventional OLS regression. It is emphasized that
penalized quantile regression constitutes a robust and flexible framework for
statistical analysis, allowing for a more precise characterization of the full con-
ditional distribution of the response variable. Its robustness to outliers makes
it a useful method in financial risk modeling, and it is applicable to economics,
social sciences, and medicine, where heterogeneity and nonlinear effects are
common.

Date: Diciembre 2025.
Key words and phrases. Regresión cuantílica, heterogeneidad, outliers, LASSO.
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1. Introducción

El estudio de la regresión cuantílica introducida formalmente por Koenker y
Bassett ([11]), representa un avance importante en la estadística aplicada y la eco-
nometría, al permitir la estimación de las relaciones condicionales subyacentes no
solo en la media de la variable de respuesta, sino en cualquier cuantil de la dis-
tribución. La regresión cuantil puede verse como una extensión de regresión lineal
ordinaria (OLS), que asume efectos homogéneos de las covariables y se centra en
la media condicional de la variable de respuesta dadas las covariables, la regresión
cuantílica a diferencia de OLS captura variaciones en la intensidad de estos efec-
tos a lo largo de la distribución, lo cual tiene relevancia en escenarios donde los
datos presentan heterogeneidad, como por ejemplo en estudios de distribución de
ingresos, impactos de políticas educativas o análisis de riesgos en salud ([12]).

Este método ofrece un aporte valioso en contextos o situaciones donde las dis-
tribuciones son asimétricas o presentan colas pesadas, situaciones que suelen pre-
sentarse comúnmente en datos reales del área social o económica. En este contexto,
por ejemplo, en el análisis de salarios, la regresión cuantílica puede dar indicios de
como el efecto de la educación varia entre trabajadores de bajos ingresos (cuan-
tiles inferiores) y altos ingresos (cuantiles superiores) ofreciendo perspectivas mas
reales o matizadas que la OLS, que podría subestimar o sobrestimar efectos en los
extremos ([4]).

El objetivo principal de este trabajo es brindar una revisión comprehensiva de
la regresión cuantílica, desde su heurística en sus bases teóricas. Secundariamente,
se busca resaltar su importancia metodológica para investigadores en estadística,
promoviendo su uso y robustez. La relevancia de esta temática radica en la capaci-
dad para detectar e informar políticas publicas mas equitativas, al poder identificar
efectos importantes que afectan desproporcionadamente a aquellos sectores mas
vulnerables. En las siguientes secciones, se proporciona una justificación sobre el
uso y aplicación de este método en el contexto de Honduras, se revisan los ante-
cedentes históricos mas relevantes y destacados, se detalla el marco teórico, por
ultimo se concluye con algunas implicaciones futuras en este escenario.

2. Justificación

El estudio y exploración de la regresión cuantílica contribuye directamente a
abordar desafíos estructurales en Honduras, como ser la desigualdad en la distribu-
ción de ingresos y la pobreza multifacetica, que impactan gran parte de la población
según el Instituto Nacional de Estadística (INE) en 2024 ([10]). La regresión cuan-
tílica permite separar los efectos de variables como remesas en diferentes sectores
socioeconómicos, el nivel educativo, el acceso a servicios básicos que pueden bene-
ficiar en el diseño de intervenciones focalizadas que fomenten la inclusión social y
el crecimiento sostenible.

De acuerdo a las prioridades de investigación establecidas por la Universidad
Nacional Autónoma de Honduras (UNAH), este trabajo se alinea con el eje de De-
sarrollo Económico y Social, de manera mas especifica en el tema prioritario de
Pobreza e inequidad ([29]), donde se le da prioridad al análisis de desigualdad sobre
los grupos sociales mas vulnerables. Pero ademas, en el marco de la Maestría en
Matemática con Orientación en Estadística Matemática de la UNAH, este estudio
se introduce en la línea de investigación Econometría y Actuaria con el enfoque de
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manejo, procesamiento y presentación de la información, pero también la predic-
ción de tendencias de un proceso, promoviendo así herramientas avanzadas para el
análisis predictivo y la toma de decisiones.

Según el estudio realizado por Díaz ([5]) donde se usa como variable de respuesta
a la pobreza laboral definida como la cantidad de personas que no tienen acceso
a la “canasta básica” y algunas variables explicativas consideradas en estudio son
la inflación, crecimiento económico (PIB), etc; donde para estimar el impacto de
estas variables sobre la distribución de la pobreza se emplea modelos de regresión
cuantílica; esto hace resaltar la importancia de desentrañar este método tanto en
forma teórica como en contextos aplicados.

3. Antecedentes

El desarrollo formal de la regresión cuantílica fue liderado por Roger Koenker y
Gilbert Bassett, quienes en su artículo de 1978 definieron el método como la solución
a un problema de minimización de la pérdida asimétrica, extendiendo así el principio
de mínimos cuadrados ordinarios a cuantiles arbitrarios ([11]). Koenker, ha sido el
principal impulsor, publicando el libro de referencia Quantile Regression en 2005,
donde se expone algoritmos computacionales, la teoría inferencial y aplicaciones
([12]).

Aunque la regresión cuantil se formalizó en 1978, tiene sus raíces en el siglo XIX,
con contribuciones iniciales de matemáticos como Pierre-Simon Laplace, quien en
1818 propuso estimadores basados en cuantiles para resumir distribuciones ([13]).
Edgeworth extendió estas ideas en la década de 1880, introduciendo conceptos de
profundidad estadística que anticipan la robustez moderna ([6]). Mas tarde, en el
siglo XX, Ragnar Frish, pionero de la econometría exploro formas robustas de re-
gresión en los años de 1920, aunque no llego a formalizar los cuantiles condicionales.

Después del tratamiento formal de la regresión cuantílica por Koenker y Bassett
en las décadas siguientes se produjeron avances significativos. En los años 1990, se
extendió a datos censurados y de supervivencia, con trabajos como el de Ying ([34])
sobre regresión mediana censurada. En los 2000, Yu & Moyeed ([35]) introdujeron
enfoques bayesianos utilizando la distribución Laplace asimétrica (ALD), facilitando
inferencia en modelos complejos ([35]). Extensiones a datos de panel incluyeron
efectos fijos por Lamarche ([17]), y modelos factoriales para alta dimensionalidad
por Koenker ([13]).

Se han propuesto extensiones ingeniosas ah este método, Meinshausen propone
una extensión de Ramdon Forest para estimar cuantiles condicionales ([20]), Takeu-
chi propone un método no paramétrico para estimar cuantiles condicionales, usando
técnicas de kernel methods/ maquinas de soporte (SVM/RKHS) que son mas flexi-
bles que modelos lineales ([25]), Yichao & Yufeng desarrollan métodos de selección
de variables dentro del marco de la regresión cuantil, focalizando en penalizaciones
tipo LASSO adaptativo y SCAND aplicadas a la regresión cuantil ([32]).

Aportes recientes en regresión cuantílica como ser, métodos para estimar cuanti-
les extremos condicionales combinando teoría de valores extremos y gradient boos-
ting ([30]), Steven & Padilla proponen un método en un marco no paramétrico que
mezcla la función de pérdida de cuantiles con una penalización de LASSO aplicado
sobre un grafo de vecinos cercanos (K-nearest neighbors, KNN) ([33]). Li & Megid-
do proporcionan un método que permite estimar simultáneamente los coeficientes
de regresión para varios cuantiles, suavizandolos como funciones suavizadas de los
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cuantiles mediante spline ([18]). Cuando los datos tienen muchas variables (mas
que observaciones) y queremos hacer regresión cuantil, los métodos clásicos (QR
penalizado con L1, “Quantile LASSO”) subren dificultades, Tan & Wang & Zhou
proponen una combinación de Convolution smoothing para suavizar la función de
pérdida de cuantiles y una regularización cóncava plegada que reduce el sesgo de
una penalización L1 ([26]).

La evolución de la regresión cuantílica ha pasado de un enfoque complementario
a la media a una herramienta estándar en econometría, con más de 20,000 citas al
trabajo fundacional de Koenker y Bassett. Recientes revisiones, como la de ([31]),
enfatizan sus aplicaciones en experimentos estocásticos y modelos paramétricos. En
ciencias del desarrollo, ([22]) demostró su utilidad para analizar efectos diferenciales
en logros educativos, revelando variaciones no capturadas por la OLS.

Estos aportes han expandido la regresión cuantílica a datos correlacionados,
censurados y de alta dimensión, consolidándola como método robusto para hetero-
geneidad.

4. Marco Teórico

En el estudio de la Regresión Cuantílica, comprender los cuantiles, sus propie-
dades estadísticas y la estructura de problemas de optimización que permiten su
calculo es esencial para analizar la distribución condicional de la variable de res-
puesta mas allá de la media. La regresión cuantílica surge como una extensión del
enfoque por mínimos cuadrados la reeemplazar el error cuadrático por una función
de perdida asimétrica que permite capturar relaciones heterogéneas a lo largo de
cada cuantil de la distribución condicional.

La regresión cuantil caracteriza el comportamiento de la variable de respues-
ta, lo cual resulta indispensable en situaciones donde el efecto de las covariables
presentan colas pesadas, asimetría, heterogeneidad o valores atípicos. Como se ha
mencionado antes, el conocimiento de los cuantiles resulta fundamental para com-
prender este enfoque. A continuación, se presenta una introducción detallada sobre
este concepto.

4.1. Cuantiles. Sea X una variable caracterizada por su función de distribución
acumulada FX(x), continua por la derecha y definida como:

FX(x) = P (X ≤ x).
Para τ ∈ (0, 1) el τ -ésimo cuantil de X es,

QX(τ) = F −1
X (τ) = ı́nf{x ∈ R : FX(x) ≥ τ}.

La función QX(τ) es continua por la izquierda y, en este marco, la mediana F −1
X ( 1

2 ),
juega un rol central. Cuando X es una variable aleatoria continua, el cuantil es único
y la igualdad se satisface estrictamente. Ademas, los cuantiles se pueden ver como
solución al problema de optimización,

QX(τ) ∈ arg mı́n
q∈R

E[ρτ (X − q)]

donde ρτ (µ) = µ(τ − I(µ < 0)) es la función de pérdida cuantílica.
Dado que FX es monótona no decreciente, cualquier elemento de {x : FX(x) = τ}

minimiza la pérdida esperada. Cuando la solución es única, x̂ = F −1
X (τ); de lo

contrario, tenemos un intervalo de cuantiles τ -ésimos del cual podemos elegir el
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elemento más pequeño, para adherirnos a la convención de que la función cuantil
empírica sea continua por la izquierda ([12]).

Los cuantiles suelen agruparse para dividir la distribución en partes iguales, tales
como:

1. Cuartiles, que segmentan a la distribución en cuatro partes correspondientes
a los cuantiles 0.25, 0.5 y 0.75.

2. Deciles, que la dividen en diez partes, asociados a los cuantiles 0.1, 0.2, · · · ,
0.8, 0.9.

3. Percentiles, que la particionan en cien partes.
Dada una muestra aleatoria X1, X2, · · · , Xn de FX es posible ordenarla de forma

ascendente y expresarla como X(1), X(2), · · · , X(n) donde X(1) ≤ X(2) ≤ · · · ≤ X(n),
y X(i) es la i-ésima estadística de orden. Al estimar FX mediante la función de
distribución empírica Fn, se tiene

Fn(x) = 1
n

n∑

i=1
I(Xi ≤ x),

o equivalente,

Fn(x) =





0 si x < X(1)

i
n si X(i) ≤ x < X(i+1), i = 1, · · · , n − 1

1 si x ≥ X(n)

da lugar a los cuantiles muestrales ([7]).

Para τ ∈ (0, 1) se define el τ -cuantil muestral de X como el cuantil τ de la fun-
ción de distribución empírica Fn y se denota por Qn(τ) y esta dada por:

Qn(τ) =





X(1) si 0 < τ ≤ 1
n

X(2) si 1
n < τ ≤ 2

n
...
X(n) si n−1

n < τ ≤ 1
Estas expresiones ilustran la relación subyacente que se presenta entre los cuan-

tiles muestrales y las estadísticas de orden ([7]).

4.2. Regresión cuantílica. Consideremos un conjunto de covariables o matriz
de diseño X ∈ Rn×p y una variable de respuesta Y ∈ Rn×1. El modelo lineal
multivariado esta dado por:
(4.1) Y = Xβ + ε

donde β ∈ Rp×1 es el vector de parámetros, ε ∈ Rn×1 es una perturbación
aleatoria que recoge todos aquellos factores distintos de las variables Xi influyendo
en Yi. En regresión lineal multivariada se busca estimar la media de la variable de
respuesta Y condicionada a que X = x es decir,

E(Y |X = x) = x⊤β.
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El procedimiento mas utilizado para estimar β es el de mínimos cuadrados ordina-
rios (OLS) que involucra la minimización de la suma de las desviaciones al cuadrado,
es decir,

n∑

i=1
ε2

i =
n∑

i=1
(Yi − Xiβ)2

para estimar β basta con derivar e igualar después a 0, obteniéndose de forma
cerrada el estimador para β:

β̂OLS = (X⊤X)−1XY

pero el método OLS requiere hipótesis previas sobre la aleatoriedad de la relación
(4.1) expresadas en términos εi ∼ N(0, σ2).

Los objetivos que se persiguen en regresión cuantílica son los mismos que en OLS,
es decir, describir las relaciones entre las variables. De forma análoga al modelo de
mínimos cuadrados ordinarios, en el que E(Y |X = x) = x⊤β, y por lo tanto
E(ε|X = x) = 0, aquí QY (τ |X = x) = x⊤βτ lo que implica que QY (ε|X = x) =
0, siendo el único supuesto que se hace sobre los errores aleatorios. La regresión
cuantílica busca estimar el τ -ésimo cuantil esperado de la variable de respuesta
condicionado a las observaciones. Es decir, dada la muestra de tamaño n, {Xi, Yi},
i = 1, . . . , n, del modelo lineal de cuantiles

QY (τ |X = x) = x⊤βτ ,

el estimador del coeficiente del τ -ésimo cuantil de regresión de Koenker y Bassett
(1978) ([11]) es

(4.2) β̂τ = arg mı́n
β∈Rp

n∑

i=1
ρτ (Yi − X⊤

i β)

donde ρτ (µ) = µ(τ − I(µ < 0)) es la función de pérdida cuantílica. El paráme-
tro βτ describe el cambio en el cuantil condicional de Y ante variaciones en X.
La variación de βτ en función de τ permite detecta heterogeneidad en la relación
respuesta–covariables. Este enfoque (4.2) permite modelar cuantiles condicionales
distintos de la media, ofreciendo robustez ante outliers, heterocedasticidad y distri-
buciones no normales.
El problema planteado anterior, presenta el inconveniente de que ρτ (µ) la función
de perdida cuantílica no es diferenciable, lo que hace necesario convertir el pro-
blema (4.2) a un problema de programación lineal bajo algunas transformaciones,
introduciendo 2n variables artificiales, o «de holgura», {ui, vi : i = 1, . . . , n} para
representar las partes positiva y negativa del vector de residuos,
(4.3) mı́n

(β,u,v)∈Rp×R2n
+

{
τ1⊤

n u + (1 − τ)1⊤
n v | 1nXβτ + u − v = y

}
,

donde 1n denota un vector de n unos. Claramente, en (4.3) estamos minimizan-
do una función lineal en un conjunto de restricciones poliédrico, que consiste en
la intersección del hiperplano de dimensión 2n + 1 determinado por las restriccio-
nes de igualdad lineal y el conjunto Rp × R2n

+ . Dicho problema puede ser resuelto
mediante diversos algoritmos que trataremos mas adelante. Muchas características
de la solución son inmediatamente evidentes a partir de este simple hecho. Por
ejemplo, mı́n{ui, vi} debe ser cero para todo i, ya que, de lo contrario, la función
objetivo puede reducirse sin violar la restricción al disminuir dicho par hacia cero.
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Esto se conoce comúnmente como complementariedad en la terminología de la pro-
gramación lineal. De hecho, por esta misma razón, podemos restringir la atención
a «soluciones básicas» de la forma ξ = Yi para alguna observación i. Observe que
la función objetivo es convexa y lineal por tramos, con puntos de inflexión en los
valores observados Yi ([12]).

4.3. Regularización en Regresión cuantílica. En la practica contemporá-
nea, la regresión cuantílica a menudo incorpora penalizaciones para controlar la
complejidad del modelo y mitigar el sobreajuste. El problema general penalizado
se formula como:

(4.4) β̂τ = arg mı́n
β∈Rp

n∑

i=1
ρτ (Yi − X⊤

i β) + λP (β)

donde ρτ (.) representa la perdida cuantílica en el cuantil τ , y P (β) denota el termino
de penalización, comúnmente basado en normas L1 similar a Lasso o L2 similar a
Ridge ([19]).

Históricamente, la regularización surge de la necesidad de equilibrar fidelidad al
dato y suavidad al ajuste. Hoy en día, se busca minimizar:

(4.5) mı́n
f

{L(f) + λP (f)} = L(f) + λP (f) → mı́n
f

!

donde L(f) cuantifica la infidelidad o falta de ajuste, o incluso mejor la perdi-
da al ajuste f y P (f) impone una penalización afectada por una parámetro de
regularización λ > 0. Una línea de desarrollo independiente, ajena inicialmente
de probabilidad, y alineada con la “combinación de observaciones” según Stigler
([19]), remite a Hadamard ([8]),quien señalo de que no todos los problemas están
realmente bien planteados. Tikhonov ([27, 28]) propuso la regularización como fa-
milia de técnicas para estabilizar soluciones, cuya forma mas exitosa coincida con
la expresión anterior 4.5.

Tibshirani ([24]) inicia con la penalización restringida, motivado por el nonne-
gative garrote de Breiman ([2]). Ambas perspectivas – Tikhonov y Phillips – están
estrechamente vinculadas vía multiplicadores de Lagrange, bajo convexidad de L y
P ([19]).

4.3.1. Ajuste del parámetro. Whittaker y Robinson ([36]) indicaban que el gra-
do de sacrificio de fidelidad por suavidad varia según el problema, recomendando
probar valores de λ y seleccionar el mas satisfactorio. Actualmente, predominan
métodos automáticos para la selección de λ.

Un enfoque común es la validación cruzada, como sugiere Hastie ([9]), preferi-
blemente con poco grupos (k-fold). Valores típicos como k = 2 o k = 10 suelen
proporcionar resultados fiables, aunque la selección aleatoria puede inducir volati-
lidad ([19]).

La validación cruzada leave-one-out (n pliegues) es computacionalmente costosa
para penalizaciones no cuadrática debido a su no linealidad. Para L1, se prefiere
la noción de grados de libertad, equivalentes al numero de ajuste exactos en cero
como verificaron en Koenker ([16]) y posteriores estudios ([19]).
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4.4. Métodos computacionales. La regresión cuantílica clásica se formula co-
mo un problema de optimización lineal que se puede resolver mediante método
simplex (punto exterior) o métodos de barrera/interior; la elección dependen de
n, p y la estructura de dispersión. Para n y p moderados, el método de punto
exterior puede ser competitivo; para gran escala, el método de punto interior es
preferible por su complejidad amortizada. El método ADMM es fundamental para
trabajar con la regresión cuantílica regularizada. Esta sección ofrece un recorrido
por técnicas computacionales clave en regresión cuantílica.

4.4.1. Metodos de punto exterior. El algoritmo de Barrodale y Roberts ([1]) explo-
to la dualidad con variables acotadas en la regresión mediana. El problema primal
de regresión mediana es:

mı́n{1⊤
n u + 1⊤

n v | y − Xb = u − v; (u, v) ≥ 0}

de dimensión (2n + p). El dual tiene resulta más simple:

máx
a

{y⊤a | X⊤a = 1
2 X⊤1n; a ∈ [0, 1]n}.

Implementa una estrategia dual de tipo Edgeworth: dada una solución básica

b(h) = (X(h))−1y(h),

se identifica la dirección de descenso mas pronunciada.
La extensión a cuantiles τ ̸= 0.5 es directa: nn el problema primal, solo reempla-

zamos los 1n por pesos asimétricos apropiados; en el dual, simplemente cambiamos
el 1

2 por 1 − τ . Variaciones en τ generan trayectorias de soluciones; Portnoy ([23])
demostró que el numero esperado de soluciones distintas es O(n log n). Técnicas
paramétricas similares aplican a problemas penalizados tipo Lasso. Aunque los mé-
todos simplex facilitan el trazado de trayectorias, el numero de soluciones puede
volverse prohibitivo, requiriendo aproximaciones ([15]).

4.4.2. Métodos de punto interior. A diferencia de los métodos de punto exterior,
que transitan vértices del conjunto factible, los de punto interior parten del centro
hacia un vértice. El método de barrera logarítmica de Frisch para programación
lineal canónica:

mı́n{c⊤x | Ax = b; x ≥ 0}
reemplaza desigualdades por:

mı́n



c⊤x − µ

p∑

j=1
log xj | Ax = b



 .

Relajando µ → 0, se converge a un vértice. Explotando primal y dual:

máx
y

{b⊤y | A⊤y + z = c; z ≥ 0},

la optimalidad implica que c − µX−1e = A⊤y, por lo que podemos establecer
z = µX−1e para satisfacer la restricción dual y obtener el sistema
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Ax = b,

A⊤y + z = c,

Xz = µe,

x ≥ 0,

z ≥ 0.

La trayectoria paramétrica (x(µ), y(µ), z(µ)) describe la trayectoria central desde
el centro del conjunto de restricciones hasta una solución en el borde del conjunto
de restricciones que satisface la condición clásica de holgura complementaria, Xz =
0, cuando µ = 0. Cuando la dimensión paramétrica del modelo es grande, las
implementaciones de punto interior puede ser bastante lentas, pero en la mayoría de
las aplicaciones no paramétricas, como las que abarca el modelo aditivo penalizado
por variación total descrito en Koenker ([14]) e implementado en rqss de quantreg,
la matriz de diseño es extremadamente dispersa. En estos caso, la factorización de
Cholesky viabiliza problemas con miles de parámetros ([15]).

4.4.3. Método de dirección alterna de multiplicadores (ADMM). Es común en apli-
caciones estadísticas encontrarse con problemas de optimización con componentes
convexos aditivamente separables. El algoritmo resuelve problemas de la forma

minimizar f(x) + g(z)
sujeto a Ax + Bz = c

con f , g convexas; variables x ∈ Rn y z ∈ Rm, donde A ∈ Rp×n, B ∈ Rp×m, y
c ∈ Rp . Un ejemplo familiar sería f como la log-verosimilitud (negativa) y g una
penalización paramétrica tipo lasso.

El Lagrangiano aumentado es:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax + Bz − c) + ρ

2∥Ax + Bz − c∥2
2.

El ADMM consta de las iteraciones

(4.6) xk+1 := arg mı́n
x

Lρ(x, zk, yk)

(4.7) zk+1 := arg mı́n
z

Lρ(xk+1, z, yk)

(4.8) yk+1 := yk + ρ(Axk+1 + Bzk+1 − c),

donde ρ > 0. Este algoritmo del método de dirección alterna de multiplicadores
(ADMM) tiene amplia aplicabilidad y se ha demostrado que converge bajo condi-
ciones suaves ([15], [3]).
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4.4.4. Forma Escalada. Combinando terminos lineales y cuadraticos en el lagran-
giano aumentado, y escalando la variable dual u = 1

ρ y, el ADMM puede escribirse
en una forma ligeramente diferente, que suele ser más conveniente. Definiendo el
residuo r = Ax + Bz − c, tenemos

yT r + ρ

2∥r∥2
2 = ρ

2

∥∥∥∥r + 1
ρ

y

∥∥∥∥
2

2
− 1

2ρ
∥y∥2

2 = ρ

2∥r + u∥2
2 − ρ

2∥u∥2
2,

Usando la variable dual escalada, podemos expresar el ADMM como

(4.9) xk+1 := arg mı́n
x

{
f(x) + ρ

2
∥∥Ax + Bzk − c + uk

∥∥2
2

}

(4.10) zk+1 := arg mı́n
z

{
g(z) + ρ

2
∥∥Axk+1 + Bz − c + uk

∥∥2
2

}

(4.11) uk+1 := uk + Axk+1 + Bzk+1 − c.

Definiendo el residuo en la iteración k como rk = Axk + Bzk − c, vemos que

uk = u0 +
k∑

j=1
rj ,

la suma acumulada de los residuos ([3]).

4.4.5. Parámetro de Penalización Variable. Para acelerar convergencia, se emplea
ρk variable (posiblemente diferentes para cada iteración), con el objetivo de mejorar
la convergencia en la práctica y hacer que el rendimiento dependa menos de la
elección inicial del parámetro de penalización. Aunque puede ser difícil probar la
convergencia del ADMM cuando ρ varía en cada iteración, la teoría para ρ fijo aún
se aplica si se asume que ρ se fija después de un número finito de iteraciones.

Un esquema simple que a menudo funciona bien es

(4.12) ρk+1 :=





τ incrρk si ∥rk∥2 > µ∥sk∥2,

ρk/τdecr si ∥sk∥2 > µ∥rk∥2,

ρk en caso contrario,

donde µ > 1, τ incr > 1 y τdecr > 1 son parámetros. Elecciones típicas podrían ser
µ = 10 y τ incr = τdecr = 2. La idea detrás de esta actualización del parámetro de
penalización es intentar mantener las normas de los residuos primal y dual dentro
de un factor µ entre sí a medida que ambos convergen a cero ([3]).

Las ecuaciones de actualización del ADMM sugieren que valores grandes de ρ
imponen una gran penalización a las violaciones de la factibilidad primal y, por lo
tanto, tienden a producir residuos primales pequeños. Por el contrario, la definición
de sk+1 sugiere que valores pequeños de ρ tienden a reducir el residuo dual, pero a
costa de disminuir la penalización sobre la factibilidad primal, lo que puede resultar
en un residuo primal más grande. El esquema de ajuste (3.13) aumenta ρ por τ incr

cuando el residuo primal parece grande en comparación con el residuo dual, y reduce
ρ por τdecr cuando el residuo primal parece demasiado pequeño en relación con el
residuo dual. Este esquema también puede refinarse considerando las magnitudes
relativas de ϵpri y ϵdual ([3]).
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Cuando se usa un parámetro de penalización variable en la forma escalada del
ADMM, la variable dual escalada uk = (1/ρ)yk también debe reescalarse después
de actualizar ρ; por ejemplo, si ρ se reduce a la mitad, uk debe duplicarse antes de
continuar ([3]).

Este método es particularmente relevante en regresión cuantílica penalizada
cuando las funciones son convexas.

4.5. Simulaciones. Se muestran a continuación simulaciones considerando tres
escenarios:

1. Primer escenario (1): Se consideran 500 observaciones tomadas de una va-
riable predictora distribuida uniformemente en el intervalo de (0,100). La
variable de respuesta se genera mediante la expresión:

Y = 2 + 0.5X + ε

donde ε se selecciono de una de una distribución normal con media 0 pero
varianza dada por 1 + 0.3X. En este escenario se esta considerando la hete-
rocedasticidad, se aplica la regresión cuantílica en los cuantiles Q1, Q2, Q3 y
se hace una comparativa visual con respecto a la regresión lineal que predice
la media condicional, que pasa por el centro del diagrama de dispersión por
lo cual no captura que la variabilidad de los datos cambia con X. Ademas
nótese que la regresión cuantílica es mas informativa que la regresión lineal
cuando los datos presentan heterocedasticidad y la distribución de los errores
no es simétrica.

0

40

80

120

0 25 50 75 100

x

y

Modelo Lineal Q25 Q50 Q75

Regresión Lineal vs Cuantílica

Figura 1. Comportamiento de la regresión cuantílica τ =
0.25, 0.5, 0.75 vs Lineal.
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2. Segundo escenario (2): Se eligió una variable predictora X distribuida normal
estándar de la cual se selecciono una muestra de 100 observaciones y se
formulo el siguiente modelo:

Y = 2 + 3X + ε

donde ε se tomo de una distribución t-Student con dos grados de libertad
para ilustrar el caso de colas pesadas, también se consideran outliers. En (2)

0

10

20

−2 −1 0 1 2

X

Y

Cuantil 0.25 Cuantil 0.5 Cuantil 0.75 Lineal (OLS)

Regresión Lineal vs Regresión Cuantílica

Figura 2. Comportamiento de la regresión cuantílica τ =
0.25, 0.5, 0.75 vs Lineal considerando colas pesadas y valores ex-
tremos.

se puede observar como la media condicional es afectada por los valores ex-
tremos, y como los cuantiles como ser la mediana no se ven afectados por esos
valores. Esto ilustra el potencial de la regresión cuantílica sobre escenarios
donde solo se modela la media condicional de la variable de respuesta.

3. Tercer escenario: En el contexto multivariado se generaron cuatro variables
predictoras de una distribución normal estándar considerando nuevamente
errores distribuidos t-Student con tres grados de libertad. Por cada variable
se generaron 500 observaciones, y la variable de respuesta se diseño bajo el
siguiente modelo

Y = 2 + 3X1 − 1.5X2 + 2X3 + 0.5X4 + ε

En la tabla (1) se presentan los coeficientes obtenidos mediante regresión
lineal multivariada, regresión cuantílica y regresión cuantílica LASSO pena-
lizada en el cual el parámetro de regularización se obtuvo mediante validación
cruzada usando por defecto k-folds igual a 10.

Nótese, que la variable X4 tiene coeficiente cero, esto indica que la regre-
sión cuantílica penalizada por LASSO permite hacer selección de variables.
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Predictor OLS RQ RQ LASSO
(Intercepto) 2.13946 1.995 2.0338
x1 2.88242 2.96584 2.5791
x2 −1.48015 −1.42750 −1.0682
x3 2.08958 2.07843 1.6679
x4 0.45645 0.49118 0.0000

RQ LASSO usa λ = 0.1233 seleccionado por validación cruzada. Coeficientes exactamente cero
indican que la variable fue eliminada por la penalización LASSO.

Cuadro 1. Comparación de coeficientes estimados para la media-
na (τ = 0.5)
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Figura 3. Cambio de los coeficientes sin penalizar según los cuan-
tiles

Ademas, en la figura (3) se muestra como van cambiando los coeficientes de
las variables a lo largo de los cuantiles. Los cambios que se presentan los
coeficientes representan el efecto de las colas pesadas y los outliers.

5. Conclusiones

La regresión cuantílica constituye un marco flexible y robusto para analizar la
distribución condicional completa de una variable de respuesta. Su formulación
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convexa, sus extensiones no paramétricas y los métodos computacionales modernos
como ADMM y punto interior permiten abordar aplicaciones de alta dimensión y
alto volumen de datos. La integración de regularización mediante penalizaciones L1
y L2 equilibra ajuste y complejidad en contextos de alta dimensión, articulando la
equivalencia entre formulaciones con restricción de perdida y con multiplicadores
de lagrange, y habilitando selección de hiperparámetros con validación cruzada y
nociones de grados de libertad. En conjunto, la teoría de cuantiles, la regularización
convexa y los avances algorítmicos conforman un ecosistema metodológico maduro
y versátil que se extiende hacia análisis mas ricos accionables a lo largo de la
distribución condicional, desde el centro hasta las colas.
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APLICACIÓN DE PRE-TRAINING EN SERIES DE TIEMPO
CLIMÁTICAS EN HONDURAS

NATHALYE NICOL DERAS DURON

Resumen. Esta investigación explora la integración del pre-training como pa-
radigma del aprendizaje estadístico en series de tiempo climáticas de Hondu-
ras. Motivada por los avances teóricos recientes en el aprendizaje estadístico
con pre-training. Esta investigación tiene como objetivo evaluar si los modelos
preentrenados pueden mejorar la estimación y predicción en variables como
la temperatura y la precipitación. Este estudio busca conectar los desarrollos
teóricos del pre-training con los desafíos prácticos del análisis de datos climá-
ticos.

Abstract. This research explores the integration of pre-training as a para-
digm of statistical learning in climatic time series from Honduras. Motivated
by recent theoretical advances in statistical learning with pre-training. This
study aims to evaluate whether pre-trained models can improve estimation
and prediction for variables such as temperature and precipitation. The study
seeks to bridge the theoretical developments of pre-training with the practical
challenges of climate data analysis

1. Introducción

El pre-entrenamiento es un paradigma poderoso en el aprendizaje automático
para transferir información entre modelos. Por ejemplo, supongamos que se tiene un
conjunto de datos de tamaño moderado con imágenes de gatos y perros y se planea
ajustar una red neuronal profunda para clasificarlos. Con el pre-entrenamiento, se
comienza con una red neuronal entrenada en un corpus grande de imágenes no
solo de gatos y perros, sino de cientos de clases. Se fijan todos los pesos de la
red excepto las capas superiores y luego se realiza un ajuste fino usando nuestro
conjunto de datos. Esto suele producir un rendimiento dramáticamente mejor que
entrenar únicamente con nuestro propio conjunto de datos [2].

En el aprendizaje estadístico contemporáneo, el pre-training ha emergido como
un enfoque fundamental para mejorar la eficiencia de los modelos predictivos, o
ahorrar al equipo desarrollador tiempo y dinero. El pre-training consiste en entre-
nar un modelo de manera previa en una tarea o conjunto de datos relacionados, de
modo que las representaciones o parámetros aprendidos se utilicen como punto de
partida para una tarea específica posterior (fine-tuning) [5].

En este sentido, el pre-training no garantiza por sí mismo un mejor desempe-
ño; su éxito radica en la calidad de los datos iniciales, la representatividad de las
condiciones climáticas empleadas durante el preentrenamiento y la adecuada cali-
bración del modelo al contexto local. En el caso de Honduras el uso de pre-training

Fecha: Octubre 2025.
Palabras y frases clave. Aprendizaje estadístico, pre-training, aprendizaje supervisado.
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se propone como una alternativa metodológica prometedora, siempre que los datos
globales utilizados reflejen patrones compatibles con la dinámica climática regional.

Esta estrategia, ampliamente estudiada en contextos de machine learning y trans-
fer learning, ha sido demostrado que consigue recuperar el soporte verdadero [2].

Desde una perspectiva estadística, el pre-training puede entenderse como una
forma de incorporar información previa en el proceso de estimación. En modelos
lineales penalizados, por ejemplo, el trabajo de Tibshirani y colaboradores [2] forma-
liza el impacto del pre-training sobre el modelo LASSO, mostrando que la inclusión
de representaciones previas reduce la varianza del estimador y mejora la precisión
predictiva en alta dimensión. De forma análoga, [3] extienden estos resultados al
contexto del aprendizaje estadístico heterogéneo, demostrando que el pre-training
puede mejorar la inferencia y la predicción en entornos con variabilidad estructural
entre unidades o dominios.

2. Justificación

El contexto climático de Honduras ofrece una oportunidad idónea para aplicar y
evaluar los efectos del pre-training. Las series de temperatura y precipitación dis-
ponibles presentan patrones temporales y espaciales complejos, así como posibles
sesgos derivados de limitaciones en la naturaleza de los datos. En estos escenarios,
los métodos tradicionales entrenados desde cero pueden sufrir de sobreajuste o ines-
tabilidad, especialmente cuando los tamaños muestrales son pequeños.

Implementar modelos que integren pre-training permitiría transferir conocimien-
to aprendido a partir de datos globales o regionales a las condiciones locales hon-
dureñas, mejorando la robustez de las estimaciones y la calidad de las predicciones
climáticas. Además, comparar cuantitativamente los modelos con y sin pre-training
proporcionará evidencia empírica sobre los beneficios reales de esta estrategia en
contextos de análisis estadístico aplicado a la climatología.

Por tanto, esta investigación no solo contribuirá a la comprensión teórica del pre-
training en modelos estadísticos, sino también a su aplicación práctica en el análisis
y modelado de series de tiempo ambientales, un área de creciente relevancia para
la planificación y adaptación climática, así como en la mitigación del riesgo debido
a las condiciones climáticas potencialmente inestables en Honduras.

Este estudio se enmarca en las líneas de investigación de la UNAH, particu-
larmente en el eje de Investigación de Ambiente, Biodiversidad y Desarrollo. La
aplicación del pre-training en series climáticas integra métodos contemporáneos de
aprendizaje estadístico con necesidades nacionales en monitoreo ambiental, apor-
tando herramientas matemáticas relevantes para comprender y anticipar variaciones
climáticas locales.

3. Antecedentes

El estudio del pre-training aplicado a datos climáticos ha evolucionado de manera
acelerada en los últimos años, impulsado por la necesidad de mejorar la estabilidad
y precisión de los modelos predictivos en contextos complejos. Diversos trabajos
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recientes han explorado el uso de representaciones preentrenadas, tanto en modelos
lineales penalizados como en arquitecturas profundas, destacando su capacidad para
reducir el sobreajuste y aprovechar información proveniente de dominios amplios o
heterogéneos.

Un primer trabajo es [6] donde los autores realizan un estudio en profundidad
sobre métodos de preentrenamiento para evaluar sus impactos en la predicción me-
teorológica global, prestando especial atención al control del sobreajuste y al análisis
de la relación entre la dificultad de la tarea y el rendimiento. Además, se presenta
un modelo llamado Baguan, que está basado en transformadores, y que utiliza un
paradigma de preentrenamiento y fine-tuning con un autoencoder enmascarado.

En este estudio, se utilizó el conjunto de datos ERA5 como los valores reales
para el entrenamiento de modelos e inferencia. Este conjunto de datos incluye una
amplia gama de variables, como temperatura, humedad, precipitación y presión
media al nivel del mar, entre otras.

Se emplean dos métricas cuantitativas específicas para evaluar la precisión de
la predicción: el Error Cuadrático Medio Ponderado por Latitud (RMSE, por sus
siglas en inglés) y el Coeficiente de Correlación de Anomalías Ponderado por La-
titud (ACC, por sus siglas en inglés). Para la optimización, se utilizó la función
de pérdida de Error Cuadrático Medio (MSE) durante el preentrenamiento y la
función de pérdida de Error Absoluto Medio (MAE) durante el ajuste fino.

Finalmente, en lo que a resultados respecta, Baguan demuestra un rendimien-
to superior, superando a IFS y Pangu-Weather en una variedad de experimentos,
además de sobresalir en diversas tareas posteriores, incluyendo predicción de sub-
estacional a estacional (S2S) y predicción regional, demostrando su versatilidad y
aplicabilidad en diferentes escalas temporales y espaciales en la predicción meteo-
rológica.

Un segundo trabajo, presentado por M. Schuessler, E. Sverdrup y R. Tibshirani
[3], propone estrategias de preentrenamiento que aprovechan un fenómeno presen-
te en aplicaciones del mundo real: los factores que son pronósticos del resultado
suelen ser también predictivos de la heterogeneidad del efecto del tratamiento. Los
objetivos planteados en este estudio son:

Proponer una estrategia de preentrenamiento que va más allá de tratar la
función del resultado promedio como un mero parámetro irrelevante en el
marco del R-learner, aprovechando el soporte compartido entre los factores
pronósticos y predictivos para la estimación del efecto promedio condicional
del tratamiento (CATE).
Establecer un enfoque con tres metas principales: primero, aumentar la pre-
cisión de la estimación del CATE explotando las sinergias entre tareas de
predicción aparentemente independientes; segundo, mejorar la recuperación
del soporte de los modificadores del efecto o efectos de interacción; y ter-
cero, obtener mayor información sobre la supuesta existencia de un soporte
compartido entre factores pronósticos y predictivos al estimar el CATE.
Demostrar la viabilidad de este enfoque mediante el desarrollo de un conjunto
de marcos de estimación que utilizan el R-learner basado en lasso (R-lasso)
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y modelos no paramétricos, mostrando además cómo este enfoque puede
extenderse a entornos no lineales mediante expansiones en funciones base y
bosques aleatorios.

En cuanto a los resultados, se concluyó que el empleo de esta estrategia de
preentrenamiento en el R-learner produce tasas de error más bajas, mayor capa-
cidad para detectar heterogeneidad y menores tasas de descubrimientos falsos, lo
cual es particularmente relevante en campos como el descubrimiento de biomar-
cadores. No obstante, se identificaron algunas limitaciones: este enfoque no ofrece
beneficios de rendimiento en escenarios con poca o ninguna coincidencia entre fac-
tores predictivos y pronósticos. Otra limitación es la dependencia de la función de
pérdida R (R-loss) para la elección adecuada de α y otros hiperparámetros; si el
error de estimación de los parámetros irrelevantes es elevado, la R-loss se vuelve
menos confiable para estos hiperparámetros.

Un tercer estudio es el presentado en [2] donde se desarrolla un marco para el
lasso en el que un modelo se ajusta a un conjunto de datos grande y luego se afina
utilizando un conjunto de datos más pequeño, este tiene una amplia variedad de
aplicaciones, incluyendo modelos estratificados, respuestas multinomiales, modelos
de múltiples respuestas, estimación del efecto promedio condicional del tratamiento
e incluso gradient boosting, los cuales se evalúan durante el estudio. El algoritmo
utilizado para este objetivo, es el algoritmo 1.

Un resultado de particular utilidad para este estudio, es que en respuestas or-
denadas en el tiempo y encadenamiento de resultados, se probó de forma empírica
que para todos los puntos temporales, el preentrenamiento casi iguala o supera la
alternativa de ajustar modelos por separado.

Algoritmo 1 Lasso Pre-Entrenado con grupos de entrada fijos
Entrada: Conjunto de entrenamiento, número de grupos K, parámetro α ∈ [0, 1]
Salida: Modelos ajustados para cada grupo con cv.glmnet
1: Ajustar un único modelo lasso “global” al conjunto de entrenamiento, por ejem-

plo usando cv.glmnet en R.
2: A partir de este modelo, elegir el vector de pesos β̂0 a lo largo del camino de λ,

usando por ejemplo lambda.min, el valor que minimiza el error de validación
cruzada.

3: Fijar α ∈ [0, 1]. Definir los valores de offset y penalty.factor como sigue:
Definir offset = (1− α) · (Xkβ̂0 + µ̂0).
Sea S el soporte de β̂0. Definir el factor de penalización pf como:

pfj = I(j ∈ S) + 1
α
· I(j /∈ S).

4: Para cada clase k = 1, . . . ,K, ajustar un modelo individual usando cv.glmnet
con los parámetros offset y penalty.factor.

5: Usar estos modelos para realizar predicciones dentro de cada grupo.

Definiciones de términos técnicos. A continuación se presentan definiciones
breves de algunos términos utilizados a lo largo del documento, con el fin de man-
tener claridad y consistencia conceptual:
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ERA5: Conjunto de reanálisis climático desarrollado por el European Centre
for Medium-Range Weather Forecasts (ECMWF), que integra observaciones
atmosféricas globales con modelos numéricos, proporcionando series históri-
cas de alta resolución espacial y temporal.
Baguan: Modelo de predicción meteorológica basado en la arquitectura
transformer, preentrenado mediante un autoencoder enmascarado y poste-
riormente ajustado (fine-tuning) para tareas climáticas específicas. Se ha
destacado por su desempeño superior en predicción de variables atmosféri-
cas.
Pre-training: Etapa en la que un modelo se entrena inicialmente sobre un
conjunto amplio o distinto de datos, con el propósito de aprender represen-
taciones generales que luego serán refinadas en la tarea específica de interés.
Fine-tuning: Fase de ajuste final del modelo preentrenado, en la cual los
parámetros aprendidos previamente se adaptan a las características particu-
lares del conjunto de datos objetivo.

4. Marco Teórico

4.1. Pre-Training y Aprendizaje por Transferencia. El pre-entrenamiento
y el aprendizaje por transferencia son técnicas fundamentales en el aprendizaje
automático, y representan estrategias para aprovechar el conocimiento de tareas
relacionadas con el fin de mejorar el rendimiento y la eficiencia en una nueva tarea
objetivo. Ambos pueden describirse mediante formulaciones matemáticas claras,
comúnmente referenciadas en revisiones de literatura.

Para comprender correctamente el aprendizaje por transferencia y su respectiva
definición, es necesario plantear unas definiciones previas.

4.1.1. Dominio. Un dominio D consiste de dos componentes. Un espacio de ca-
racterísticas χ y una istribución marginal de probabilidad P (X), donde X =
(x1, x2, . . . , xn) ∈ χ. En general, si dos dominios son diferentes, podrían tener dis-
tinto espacio de características, o distribuciones de probabilidad marginales.

4.1.2. Tarea. Dado un dominio específico, D = (χ, P (X)), una tarea consiste en
dos componentes. Un espacio de etiquetas Y, y una función predictiva f(·) (deno-
tada por T = (Y, f(·)) que no es observada pero puede ser aprendida por los datos
de entrenamiento, que consiste en pares (xi, yi), donde xi ∈ X y yi ∈ Y. La función
f(·) puede ser usada para predecir la etiqueta correspondiente f(x) para algún x.
Con esto, podemos definir el aprendizaje por transferencia.

4.1.3. Aprendizaje por Transferencia. Dado algún dominio Ds y una tarea de
aprendizaje Ts, un dominio objetivo DT y una tarea de aprendizaje TT , el aprendi-
zaje por transferencia busca mejorar el aprendizaje de la función predictiva objetivo
ft(·) en DT usando el aprendizaje de Ds y Ts, donde Ds 6= DT o Ts 6= TT .
Cabe aclarar en la definición de aprendizaje por transferencia que la condición
Ds 6= DT implica que χs 6= χT o Ps(X) 6= PT (X) [11].

El pre-training, o pre-entrenamiento, en aprendizaje automático, es una etapa
de entrenamiento que entrena un modelo de propósito general (a veces llamado
foundation model) utilizando datos de acceso público. El pre-entrenamiento suele
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ir seguido de un ajuste fino (fine-tuning) para dotar al modelo de información es-
pecífica para una tarea determinada [12].

Sea:
Ds = {(x(i)

s , y
(i)
s )} el conjunto de datos fuente, extraído del dominio fuente

S con distribución Ps(X,Y ).
θ los parámetros del modelo fθ.

El objetivo del preentrenamiento generalmente consiste en minimizar la pérdida
L sobre los datos fuente:

mı́n
θ

E(xs,ys)∼Ps

[
L(fθ(xs), ys)

]

Este paso ayuda a que fθ aprenda representaciones transferibles [11].

4.2. Pre-Training en Contextos Heterogéneos. En el trabajo de Schuessler,
Sverdrup y Tibshirani (2025) amplía la comprensión del pre-training al introducirlo
dentro del marco del aprendizaje estadístico heterogéneo, donde las relaciones entre
variables difieren entre subpoblaciones o dominios. Los autores demuestran que, en
muchos problemas empíricos, los factores que son pronósticos del resultado suelen
ser también predictivos de la heterogeneidad del efecto del tratamiento. Aprove-
chando esta coincidencia, proponen una estrategia de preentrenamiento basada en
el R-learner con penalización tipo LASSO (R-lasso), que mejora la precisión en
la estimación del efecto condicional promedio del tratamiento (CATE). El valor
teórico de este planteamiento radica en que el pre-training deja de ser solo una
herramienta de predicción para convertirse en un instrumento de mejor inferencia
estadística, al reducir la varianza en la estimación de los modificadores de efecto y
fortalecer la recuperación del soporte compartido entre tareas. Esto implica que el
conocimiento adquirido durante el preentrenamiento no solo acelera la convergencia
del modelo, sino que también mejora la calidad inferencial del proceso, extendiendo
su aplicabilidad a contextos causales y de inferencia estructurada [3].

4.3. Pre-Training en Cambio Climático. Un ejemplo es VITA (Variational
Pretraining of Transformers for Climate Applications), que utiliza datos meteoro-
lógicos detallados durante el pre-entrenamiento para aprender patrones climáticos
complejos y su relación con resultados agrícolas como los rendimientos de maíz y
soya. Este enfoque mejora significativamente la precisión de las predicciones, espe-
cialmente para eventos climáticos extremos que se han vuelto más frecuentes debido
al cambio climático. El pre-entrenamiento de VITA le permite generalizar bien a lo
largo del tiempo y en diferentes geografías, capturando dinámicas universales entre
clima y agricultura sin depender en gran medida de datos auxiliares como informa-
ción del suelo. Esto demuestra cómo el pre-entrenamiento con datos históricos del
clima puede mejorar la resiliencia y la precisión en la predicción de rendimientos
agrícolas frente a los impactos del cambio climático [7].

Otra aplicación del pre-entrenamiento en ciencia climática es la restricción de
proyecciones climáticas a largo plazo. Las redes neuronales profundas, pre-entrenadas
con extensas simulaciones de modelos climáticos y observaciones históricas, pueden
capturar mejor relaciones complejas como los cambios entre el CO2 atmosférico y la
temperatura. Esto mejora la confiabilidad y precisión de las proyecciones climáticas
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futuras, reduce la incertidumbre en las estimaciones del aumento de temperatura
y ayuda a evaluar cuándo podrían superarse umbrales críticos, como el límite de
calentamiento global de 1.5 ◦ C [8].

También se están desarrollando modelos de lenguaje pre-entrenados como Cli-
mateBERT, diseñados para manejar y analizar mejor textos y literatura científica
relacionada con el clima, mejorando tareas como la clasificación de textos y el aná-
lisis semántico en investigación climática. En resumen, el pre-entrenamiento en la
ciencia del clima ayuda a desarrollar modelos más precisos, generalizables y robustos
frente a condiciones climáticas complejas y cambiantes. Esto beneficia las predic-
ciones agrícolas, las proyecciones climáticas, las evaluaciones de impactos locales y
también el procesamiento de información climática en forma de textos, apoyando
así los esfuerzos de mitigación y adaptación en el contexto del cambio climático
[10].

En resumen, el pre-entrenamiento en la ciencia del clima ayuda a desarrollar
modelos más precisos, generalizables y robustos frente a condiciones climáticas
complejas y cambiantes. Esto beneficia las predicciones agrícolas, las proyeccio-
nes climáticas, las evaluaciones de impactos locales y también el procesamiento de
información climática en forma de textos, apoyando así los esfuerzos de mitigación
y adaptación en el contexto del cambio climático.

5. Metodología y Resultados Obtenidos

Para la evaluación empírica se consideraron cuatro modelos generadores de datos
distintos, cada uno representando un conjunto particular de supuestos de distribu-
ción. Adicionalmente, se aplicó un esquema de pre-entrenamiento en uno de estos
modelos con el fin de analizar hasta qué punto el conocimiento adquirido bajo ese
escenario específico podía transferirse a los otros tres generadores El entrenamiento
y pre-entrenamiento se lleva a cabo usando LASSO.

La idea base de los modelos que fueron puestos a prueba para efectos de estos
experimentos, es como sigue:
Sea un modelo lineal:

Yg = Xgβg + εg

Donde:
Xg es una matriz,
βg es un vector de coeficientes,
εg ∼ N(0, σ2

gI)
Si todos los grupos comparten sus características βg = β0, el pre-entrenamiento

no agrega ningún beneficio al ajuste individual.

5.1. MODELO I. El modelo I es como sigue:
Yg = Xgβg + εg, βg = β0 + δg, δg ∼ N (0, τ2Ip)

La motivación detrás de este, es que todos los grupos comparten los mismos
predictores y estructura general del modelo, pero cada uno tiene variaciones con-
textuales en los coeficientes, con respecto a la intución de esta propuesta es que
el pre-entrenamiento puede estimar la componente compartida β0 eficientemente y
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luego realizar ajuste fino en las desviaciones locales δg. Aunque la estructura del
Modelo I,

βg = β0 + δg, δg ∼ N(0, τ2Ip),
puede recordar a la formulación de un modelo jerárquico o de efectos aleatorios, en
este estudio no se interpreta como tal.
El objetivo del modelo es únicamente generar variaciones controladas entre grupos a
través del término δg, sin especificar una estructura multinivel completa ni realizar
inferencia sobre componentes de varianza, como suele hacerse en los modelos jerár-
quicos formales. Por tanto, el Modelo I comparte una forma matemática similar,
pero no se considera un modelo jerárquico en sentido estricto dentro del enfoque
adoptado.

5.2. MODELO II. El modelo II es como sigue:
Yg = Xgβ0 + εg, εg ∼ N (0, σ2

gIn), σ2
g ∈ {1, 1,5, 2, 3}

La motivación detrás de este modelo es que los grupos comparten la misma es-
tructura media pero difieren en su nivel de ruido. Esto pretende capturar hetero-
cedasticidad a través de subpoblaciones, con respecto a la intuición, se pretende
probar si el pre-entrenamiento estabiliza las estimaciones en grupos con varianzas
más grandes.

5.3. MODELO III.
β1 = [1, 0,8, 0,5], β2 = [1,−0,8, 0,5]

Yg = Xgβg + εg

La motivación tras este modelo es que los grupos siguen la misma estructura de re-
gresión pero difieren en la dirección de uno de los efectos, pretendiendo representar
similaridad parcial entre poblaciones.

5.4. MODELO IV.
Y4 = X4,1 β4,1 + X4,2 β4,2 + ε4.

El modelo 4, utiliza únicamente las primeras dos columnas predictoras de X para
explicar Y4.

5.5. Resultados obtenidos. Fijando n = 100, p = 3 obtenemos los resultados
que siguen:

Grupo n MSE Pre-Entrenamiento MSE_Entrenamiento
2 100 2.335063 2.274642
3 100 3.653632 3.636336
4 100 8.478320 8.601884

Cuadro 1. Resumen de MSE para los distintos grupos.

En los resultados obtenidos en la tabla 1 se evidencia que bajo las condiciones
evaluadas (número de muestra y características fijo, el pre-entrenamiento no ofrece
mejoras significativas en los grupos 2 y 3, lo cual se refleja en los valores de MSE
muy similares.
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Esto indica que, para estos grupos, los coeficientes preentrenados no aportan
información adicional útil, ya sea porque los modelos objetivo difieren sustancial-
mente del modelo preentrenado o porque los datos disponibles ya son suficientes
para una estimación precisa.

En contraste, el Grupo 4 muestra una reducción ligeramente mayor, pero sig-
nificativa en el MSE al usar LASSO con preentrenamiento, lo que sugiere que el
preentrenamiento es beneficioso cuando el grupo objetivo tiene una señal más débil,
mayor ruido o menos predictores informativos.

Además, los resultados sugieren que el impacto del pre-entrenamiento depende
fuertemente del grado de similitud entre el modelo fuente y el modelo objetivo.
En los grupos 2 y 3, donde la estructura del modelo verdadero coincide con la
del entrenamiento base, pero la señal es suficientemente fuerte o los datos son
informativos, el pre-entrenamiento no aporta mejoras sustanciales. Esto coincide
con la teoría previa, que afirma que el beneficio del pre-training disminuye cuando
los modelos locales ya pueden estimarse con baja varianza. En contraste, el Grupo 4
presenta una estructura distinta, utilizando únicamente dos de los predictores para
generar la respuesta. En este caso, el pre-entrenamiento actúa como un mecanismo
regularizador, ayudando al modelo a estabilizar los coeficientes en presencia de
una señal más débil y mayor incertidumbre. Este patrón refuerza la idea de que el
pre-training es más útil en escenarios con heterogeneidad estructural o cuando los
datos por grupo poseen menos información útil. En conjunto, estos hallazgos son
coherentes con los resultados de la literatura reciente, donde el pre-entrenamiento
tiende a mejorar el desempeño cuando existe algún componente global compartido
entre dominios, pero su beneficio disminuye cuando los modelos específicos son
suficientemente robustos o cuando el soporte entre tareas difiere marcadamente.

6. Conclusiones

El aprendizaje por transferencia se ha consolidado como un paradigma del apren-
dizaje automático con un alto potencial para mejorar el rendimiento de los modelos
bajo las condiciones adecuadas. Dentro de este marco, el preentrenamiento ha ga-
nado especial relevancia en los últimos años, pues permite aprovechar modelos de
gran escala entrenados con vastas cantidades de información y transferir ese cono-
cimiento a tareas más específicas. Esto se traduce en reducciones importantes de
tiempo, recursos computacionales y costos para quienes implementan estos métodos.

No obstante, a pesar de sus numerosas ventajas, el preentrenamiento no garanti-
za mejoras en todos los casos. Existen escenarios en los que un modelo preentrenado
no supera de manera significativa a un modelo entrenado desde cero, ya sea por
diferencias sustanciales entre el dominio original y el dominio objetivo, o por la dis-
ponibilidad suficiente de datos específicos para la tarea final. Tal comportamiento
se observó también en la sección de resultados de este trabajo, donde el preentre-
namiento no produjo mejoras consistentes en todos los grupos evaluados.

Como trabajo futuro, se plantea evaluar y validar la eficacia del preentrenamiento
en datos propios de una región particularmente vulnerable, como Honduras, con el
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fin de generar conocimiento que contribuya a la mitigación del riesgo asociado a la
inestabilidad climática.
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ESTIMACIÓN DE VELOCIDAD Y DENSIDAD VEHICULAR
MEDIANTE REDES NEURONALES CONVOLUCIONALES PARA

EL AJUSTE DE MODELOS DE REGRESIÓN

RUTH EUNICE MORENO MELARA

Dedicado a mi familia

Resumen. En esta investigación se plantea un estudio orientado a la estima-
ción de velocidad vehicular mediante técnicas de visión por computadora y
aprendizaje automático. Los videos capturados en carreteras serán procesados
mediante un modelo de Redes Neuronales Convolucionales (CNN) entrenado
con una base de datos elaborada por los propios autores, a partir de imágenes
y secuencias de video etiquetadas manualmente. Este modelo permitirá la de-
tección de vehículos, sobre la cual se desarrollarán algoritmos de seguimiento y
estimación de velocidad. Con los datos obtenidos se calculará la densidad vehi-
cular en intervalos de tiempo definidos, aplicando métodos de muestreo que
garanticen la representatividad de la información. Finalmente, se implementa-
rá una regresión lineal entre velocidad y densidad, cuyos coeficientes servirán
como parámetros de entrada en un modelo de congestión vehicular formulado
mediante ecuaciones diferenciales parciales. El objetivo de la investigación es
generar información precisa y validada que contribuya al desarrollo de modelos
avanzados para el análisis y predicción del tráfico vehicular.

Abstract. This research presents a study focused on vehicle speed estimation
using computer vision and machine learning techniques. The videos captu-
red on roadways will be processed through a Convolutional Neural Network
(CNN) model trained with a self-developed database, built from manually la-
beled images and video sequences. This model will enable vehicle detection,
upon which tracking and speed estimation algorithms will be developed. Using
the data obtained, vehicle density will be calculated over defined time inter-
vals, applying sampling methods that ensure representativeness and reduce
potential bias. Finally, a linear regression between speed and density will be
implemented, whose coefficients will serve as input parameters for a traffic
congestion model formulated through partial differential equations. The ob-
jective of this research is to generate accurate and validated information that
contributes to the development of advanced models for traffic analysis and
prediction.

1. Introducción

En esta investigación se aborda el desafío de estimar la velocidad vehicular y ana-
lizar su relación con la densidad de tráfico mediante técnicas de visión por compu-
tadora y aprendizaje automático. El estudio combina el uso de Redes Neuronales
Convolucionales (CNNs) para la detección de vehículos, desarrollo de algoritmos

Fecha: Octubre 2025.
Palabras y frases clave. Redes Neuronales, Detección, estimación, regresión.
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de seguimiento de objetos y la estimación de la velocidad respectiva de cada obje-
to. A partir de esta herramienta, se pretende realizar la estimación de coeficientes
de regresión, con el propósito de generar modelos cuantitativos que describan el
comportamiento del tránsito en entornos reales.

Los videos capturados en carreteras se procesan mediante un modelo de CNN
entrenado con una base de datos de elaboración propia, construida a partir de imá-
genes y secuencias de video etiquetadas manualmente. Este modelo se encarga de la
detección de vehículos en cada cuadro del video (frames), sobre la cual se desarrolla
un algoritmo de seguimiento que permite identificar, etiquetar y dar continuidad a
cada vehículo detectado a lo largo de la secuencia. A partir de la información gene-
rada por este seguimiento, se implementa un algoritmo adicional para la estimación
de la velocidad, con el fin de calcular el desplazamiento de cada vehículo en función
del tiempo y la posición. Posteriormente, con los resultados de estos dos procesos,
se diseña un tercer algoritmo para el cálculo de la densidad vehicular, permitiendo
obtener las dos variables fundamentales, velocidad y densidad, que serán empleadas
en la regresión lineal destinada a modelar su relación.

El estudio también contempla la validación de los datos recolectados y la eva-
luación de los métodos de muestreo más apropiados, con el objetivo de garantizar
la representatividad y reducir posibles sesgos en las estimaciones.

En conjunto, esta investigación pretende aportar herramientas metodológicas y
analíticas que contribuyan al avance del conocimiento en el campo de la visión por
computadora aplicada al transporte, favoreciendo la comprensión y modelización
de la dinámica vehicular en contextos urbanos y carreteros.

2. Justificación

La creciente congestión vehicular en los principales corredores urbanos del país
representa un problema de gran impacto económico y social, generando pérdidas de
tiempo, aumento en el consumo de combustible y mayores niveles de contaminación
ambiental. En este contexto, la estimación precisa de la velocidad y la densidad
vehicular constituye una herramienta para el diseño de políticas públicas orientadas
a la optimización del tránsito, la planificación de infraestructura vial y la mejora
de la movilidad urbana.

Esta investigación propone un enfoque basado en redes neuronales convolucio-
nales (CNN) y técnicas de aprendizaje automático para la detección, seguimiento y
estimación de velocidad de vehículos a partir de secuencias de video, complementa-
do con un análisis de regresión lineal entre la velocidad y la densidad vehicular. La
aplicación de estos métodos permite generar información que puede ser utilizada
en modelos de predicción y simulación del tráfico, contribuyendo a la formulación
de estrategias que promuevan una gestión vial más eficiente y sostenible.

El desarrollo de esta temática se alinea con los temas prioritarios del Eje 1
de la UNAH, “Desarrollo Económico y Social”, específicamente en el apartado de
“Infraestructura y desarrollo territorial”, ya que sus resultados pueden apoyar la
planificación y modernización del sistema vial nacional.

El enfoque interdisciplinario de este trabajo combina el rigor matemático con
herramientas de inteligencia artificial, lo que fortalece la capacidad de análisis y
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predicción de fenómenos complejos relacionados con la movilidad urbana, aportando
así al desarrollo científico y tecnológico del país.

3. Antecedentes

El desarrollo de sistemas automáticos para la estimación de velocidad vehicular
constituye una línea de investigación dentro de la visión por computadora y los
sistemas inteligentes de transporte. La necesidad de mejorar la seguridad vial, op-
timizar el flujo de tráfico y reducir la congestión ha impulsado la implementación
de tecnologías capaces de analizar de manera automática las secuencias de video
obtenidas por cámaras de vigilancia. Estos sistemas permiten estimar la velocidad,
la densidad y la clasificación de vehículos en tiempo real, lo cual representa un in-
sumo esencial para la planificación urbana, la detección de infracciones, entre otras.
[7].

Los primeros enfoques para determinar la velocidad vehicular a partir de secuen-
cias de video se basaron principalmente en el análisis de flujo óptico, técnica que
estima el movimiento de los píxeles entre fotogramas consecutivos para calcular la
dirección y magnitud del desplazamiento. Ruimin Ke et al. [2] propusieron un méto-
do que combina el flujo óptico con el algoritmo de agrupamiento K-Means, aplicado
a videos aéreos capturados por vehículos no tripulados. Este enfoque permite cal-
cular la velocidad promedio de los vehículos en escala de imagen y posteriormente
convertirla a unidades reales, alcanzando un error relativo de aproximadamente el
12%.

Con el objetivo de mejorar la precisión de las mediciones, se introdujeron modelos
de calibración de cámara que consideran la altura de instalación y el ángulo de
inclinación. Karim et al. [3] demostraron que el uso de parámetros geométricos
permite transformar las coordenadas del plano de imagen al plano del mundo real,
reduciendo los errores asociados a la perspectiva. Sin embargo, la calibración manual
de cada cámara representa una limitación significativa para la escalabilidad de estos
sistemas en entornos urbanos complejos.

Makwana y Goel [4] introdujeron un modelo que integra detección, clasificación y
seguimiento de vehículos mediante la conversión de coordenadas del centro geomé-
trico del objeto desde el sistema de imagen al sistema del mundo real. Su propuesta
estableció la base para los algoritmos posteriores que incorporan técnicas de segui-
miento, como el filtro de Kalman [5] y el algoritmo húngaro [6], para mejorar la
continuidad de las trayectorias en múltiples fotogramas.

Con el auge del aprendizaje profundo, los modelos de Redes Neuronales Con-
volucionales (CNN) han revolucionado la detección y el seguimiento de objetos en
video. Estos avances facilitaron la identificación automática de vehículos, su clasi-
ficación en múltiples categorías y el cálculo de sus trayectorias mediante sistemas
de seguimiento en tiempo real. En este contexto, Grents et al. [1] desarrollaron un
sistema que combina un detector Faster R-CNN de dos etapas con el algoritmo de
seguimiento SORT (Simple Online and Real-Time Tracking), logrando determinar
la velocidad de los vehículos con un error porcentual absoluto promedio inferior al
22%. El modelo fue entrenado con más de 52,000 objetos extraídos de videos urba-
nos y mostró un desempeño robusto frente a condiciones variables de iluminación
y densidad vehicular.
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Las CNN, al permitir la extracción jerárquica de características espaciales, han
superado ampliamente las limitaciones de los métodos tradicionales de flujo óp-
tico y de calibración geométrica. La combinación con filtros estadísticos como el
de Kalman posibilita la predicción de trayectorias bajo ruido o interrupciones mo-
mentáneas, mientras que algoritmos de optimización como el húngaro permiten
una asignación eficiente de detecciones entre cuadros consecutivos. No obstante, las
principales dificultades actuales se centran en la dependencia de grandes volúmenes
de datos etiquetados, la sensibilidad a la resolución de video y el procesamiento en
tiempo real en entornos urbanos congestionados.

En síntesis, la literatura muestra una evolución progresiva desde los modelos ba-
sados en flujo óptico hasta los enfoques híbridos que integran aprendizaje profundo
y técnicas de seguimiento probabilístico. La tendencia actual se orienta hacia sis-
temas que no solo estimen la velocidad vehicular, sino que también incorporen la
densidad del tráfico, la detección de patrones anómalos y la predicción de conges-
tión. Este panorama refleja la relevancia científica y tecnológica del tema, y justifica
la continuidad de investigaciones orientadas a mejorar la precisión y eficiencia de
los modelos de estimación de velocidad vehicular mediante CNN y métodos esta-
dísticos.

4. Construcción de la Base de Datos

La calidad del conjunto de datos incide directamente en el rendimiento de los
modelos de visión por computador. En esta sección se detalla el procedimiento para
la adquisición, preprocesamiento, anotación y organización del dataset.

4.1. Adquisición de datos. En primer lugar, se debe realizar la adquisición del
material visual, entendida como la recopilación de secuencias de video o imágenes
estáticas bajo condiciones controladas o naturales. Este proceso implica definir el
entorno de captura, la resolución objetivo, la tasa de fotogramas y el posicionamien-
to de las cámaras, con el fin de minimizar sesgos asociados a iluminación, oclusiones
o variabilidad excesiva del fondo.

Sea V = {V1, V2, . . . , VN} el conjunto de videos obtenidos con una cámara de
resolución 1920× 1080 píxeles y frecuencia de muestreo FPS = 30

Cada video Vk es una secuencia temporal de fotogramas

Vk = {Ik,1, Ik,2, . . . , Ik,Tk
},

donde cada imagen

Ik,t ∈ RH×W×3, H = 1080, W = 1920.

Con RH×W×3 = {A | Ai,j,c ∈ R, 1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ c ≤ 3} .

Es decir, cada imagen es un tensor (ver sección 7.1.1) cuya primera dimensión
corresponde a la altura (H), la segunda al ancho (W ), y la tercera a los tres canales
de color (RGB).
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Los frames extraídos se recopilan en el conjunto

I =
N⋃

k=1
{Ik,t : 1 ≤ t ≤ Tk}.

En este contexto, un frame se define como una imagen estática obtenida a partir
de una secuencia de video. Cada video k está compuesto por Tk imágenes ordena-
das temporalmente, denotadas como Ik,1, Ik,2, . . . , Ik,Tk

. Por tanto, el conjunto I
representa la colección total de imágenes individuales derivadas de todos los videos
considerados.

Se debe realizar una selección manual de imágenes relevantes dentro del conjunto
I, de modo que únicamente aquellas muestras que aportan información útil sean
retenidas para el entrenamiento del modelo. Aunque I contiene todos los frames
extraídos, no todos ellos presentan condiciones adecuadas para la tarea de visión
por computador que se pretende abordar. Esta depuración inicial facilita las etapas
posteriores de anotación, ya que elimina muestras que podrían inducir ambigüedad
o inconsistencias en el etiquetado.

Una vez identificado el subconjunto de imágenes relevantes |I|, el siguiente pa-
so consiste en aplicar un proceso de preprocesamiento destinado a normalizar y
estandarizar el material visual.

5. Preprocesamiento de imágenes

Para cada imagen original I ∈ I se aplicaron transformaciones definidas como
una función Φ : RH×W×3 −→ Rh×w×3 donde (h,w) = (416, 416) es la resolu-
ción utilizada por el modelo CNN que se han analizado, de esta forma se realiza
una normalización y redimensionamiento a cada imagen mediante I ′ = Φ(I) =
Resize(I, 416, 416).

El redimensionamiento garantiza la homogeneidad espacial del conjunto de imá-
genes, pero no aborda la presencia de información irrelevante en la escena. Para
focalizar el procesamiento en los objetos de interés, se incorpora una etapa adicio-
nal: la segmentación de fondo.

5.1. Segmentación de fondo. Tras normalizar la resolución y estructura ten-
sorial de cada imagen, es necesario aplicar operaciones que permitan reducir la
presencia de información irrelevante dentro de la escena. Muchas imágenes contie-
nen amplias regiones de fondo que no aportan contenido significativo para la tarea
de detección y seguimiento. Para eliminar este efecto y centrar el procesamiento en
los objetos de interés, se incorpora una etapa de segmentación de fondo, descrita a
continuación.

Sea I ′ ∈ Rh×w×3 una imagen preprocesada. Definimos una función de segmen-
tación

S : Rh×w×3 −→ {0, 1}h×w,
la cual asigna a cada píxel de la imagen un valor binario. El resultado es una

máscara M = S(I ′) donde
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M(x, y) =
{

1, si el píxel pertenece a la región de interés,
0, si el píxel pertenece al fondo.

La imagen segmentada (región de interés) se obtiene aplicando la máscara

IROI(x, y) = I ′(x, y) ·M(x, y),
es decir, se conservan únicamente los píxeles donde M = 1 y se eliminan (se

vuelven cero) los píxeles donde M = 0.

6. Datos a utilizar: Anotación y clases definidas

Dado que se utilizará un modelo de CNN en un esquema de aprendizaje supervi-
sado, es indispensable contar con un conjunto de datos previamente anotado. Esto
implica especificar, para cada imagen, tanto la ubicación de los objetos de interés
como la clase a la que pertenecen. Dichas anotaciones constituyen la información
necesaria para que la red neuronal pueda aprender a detectar y clasificar correcta-
mente los vehículos presentes en las imágenes.

Se debe definir C el conjunto de clases consideradas, como por ejemplo
C = {car, big_car, motorcycle, small_bus}.

Para cada imagen IROI se define un conjunto de anotaciones
B(IROI) = {(bi, ci)}mI

i=1,

donde:
bi ∈ R4 representa un bounding box en formato

bi = (xi, yi, wi, hi),
siendo (xi, yi) el centro del recuadro y (wi, hi) su ancho y alto.
ci ∈ C es la clase anotada.
mI es el número total de objetos anotados en esa imagen.

Cada imagen anotada satisface mI ≥ 1, es decir, contiene al menos un objeto
etiquetado.

bi = (xi, yi, wi, hi)

b̂i = (x̂i, ŷi, ŵi, ĥi, p̂i)

(x̂i, ŷi)

ŵi

ĥi

ground truth

prediction
p̂i = 0,88

ĉi = 1 : V ehículo

Figura 1. Ejemplo gráfico de un objeto anotado y su correspon-
diente predicción. El recuadro rojo indica la anotación de referen-
cia, mientras que el recuadro amarillo muestra el bounding box
estimado por la red
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La Figura 6 ilustra la relación entre las anotaciones manuales utilizadas duran-
te el entrenamiento y las predicciones generadas por la CNN. El recuadro rojo
representa el ground truth bi = (xi, yi, wi, hi), mientras que el recuadro celeste co-
rresponde a la predicción del modelo b̂i = (x̂i, ŷi, ŵi, ĥi, p̂i), que incluye tanto las
coordenadas estimadas como la probabilidad asociada a la presencia del objeto.

Cabe señalar que la anotación se realiza sobre el mismo tipo de imagen que se-
rá utilizada para entrenar a la CNN. Si el modelo recibe la imagen original I, las
etiquetas deben definirse sobre I; si recibe únicamente la región segmentada IROI,
entonces la anotación debe hacerse sobre IROI. De este modo se garantiza coheren-
cia geométrica entre las anotaciones y los datos empleados en el entrenamiento.

Estos elementos constituyen la base semántica sobre la cual el modelo aprende
a distinguir y localizar los objetos de interés. La forma en que la CNN procesa
estas anotaciones, transforma la información visual y aprende representacionesse
detallará en la sección 7.1.

6.1. Estructura y partición del dataset. Una vez completado el proceso de
etiquetado, se debe definir el dataset total, usualmente como

D = {(IROI,B(IROI))}.
En un escenario típico de aprendizaje supervisado, este conjunto se particiona en

tres subconjuntos disjuntos destinados a funciones específicas dentro del esquema
de entrenamiento.

Dtrain ∪ Dval ∪ Dtest = D, Dtrain ∩ Dval = ∅, Dtrain ∩ Dtest = ∅,
con proporciones

|Dtrain| = 0,70 |D|, |Dval| = 0,20 |D|, |Dtest| = 0,10 |D|.
Donde
Dtrain: datos utilizados para entrenar el modelo,
Dval: datos usados para ajustar hiperparámetros y evitar sobreajuste,
Dtest: datos reservados para evaluar el desempeño final.

Esta partición debe asegurar independencia entre subconjuntos y representati-
vidad de las clases para obtener una evaluación confiable del modelo. Estas cifras
pueden variar según la disponibilidad de datos y la complejidad del problema. La
finalidad de esta estructura es proporcionar un marco experimental reproducible y
consistente, sobre el cual se puedan comparar distintos modelos o configuraciones.

7. Arquitectura General del Sistema

El sistema opera sobre una secuencia de imágenes extraída de un video, la cual
puede representarse como {It}Tt=1, donde cada elemento It corresponde al fotogra-
ma capturado en el instante t. En la práctica, un video puede considerarse como
un conjunto de imágenes ordenadas temporalmente, y su captura está determinada
por la tasa de muestreo de la cámara.

Sea fs la tasa de muestreo expresada en fotogramas por segundo (FPS). Este
parámetro indica cuántas imágenes son registradas en un segundo de grabación. De
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esta forma, el intervalo temporal entre dos fotogramas consecutivos viene dado por
∆t = 1/fs. Por ejemplo, si el video se registra a 30 FPS, entonces cada imagen se
obtiene cada ∆t ≈ 0,033 segundos.

El objetivo consiste en transformar esta secuencia en un conjunto de trayectorias
vehiculares γ(k)(t) y, posteriormente, en estimaciones de velocidad v(k)(t).

La trayectoria de cada vehículo se representa mediante la función γ(k)(t), la cual
indica la posición del vehículo k en cada instante t del video. De forma simple, se
define como

γ(k)(t) = (X(k)
t , Y

(k)
t ),

donde (X(k)
t , Y

(k)
t ) corresponde a la ubicación del vehículo en el plano real en

el tiempo t. A partir de esta trayectoria, la velocidad del vehículo se describe me-
diante la función v(k)(t), definida como la razón entre el desplazamiento entre dos
fotogramas consecutivos y el tiempo transcurrido entre ellos:

v(k)(t) = ‖γ
(k)(t+ ∆t)− γ(k)(t)‖

∆t .

De esta manera, γ(k)(t) indica en donde se encuentra el vehículo en cada instan-
te, mientras que v(k)(t) indica la velocidad entre un frame y el siguiente.

Para lograrlo, el sistema se divide en tres componentes:
1. Detección: identificación de vehículos en cada imagen mediante una CNN.
2. Seguimiento: asociación entre detecciones de fotogramas consecutivos y

estimación de la posición del vehículo en el tiempo.
3. Estimación cinemática: cálculo de desplazamientos reales y de velocida-

des.
De esta manera, cada módulo transforma la información del anterior, permitien-

do obtener descripciones coherentes del movimiento vehicular.

7.1. Modelo de Detección Basado en CNN. El modelo que se planea utili-
zar en esta investigación se enmarca dentro del campo de la Inteligencia Artificial
(IA), entendida como el conjunto de métodos que permiten que un sistema compu-
tacional realice tareas que, tradicionalmente, requieren de capacidades humanas
tales como percepción, toma de decisiones o clasificación. Dentro de este campo, el
Machine Learning (ML) constituye la rama que se enfoca en el diseño de algoritmos
capaces de aprender patrones a partir de datos.

A su vez, el Deep Learning (DL) es una subcategoría de ML basada en modelos
compuestos por múltiples capas no lineales, capaces de aproximar funciones de al-
ta complejidad. Cuando estos modelos se entrenan utilizando datos etiquetados, el
enfoque se denomina aprendizaje supervisado.

En particular, se empleará una Red Neuronal Convolucional (CNN), un arqui-
tectura de DL especialmente diseñada para el procesamiento de imágenes, debido a
su capacidad para extraer automáticamente características espaciales y jerárquicas
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relevantes para la detección de objetos.

Según [12], así como en los organismos biológicos necesitan estímulos externos
para el aprendizaje, en las redes neuronales artificiales el estímulo externo lo propor-
cionan los datos de entrenamiento que contienen ejemplos de pares entrada-salida
de la función que se va a aprender. Por ejemplo, la formación los datos pueden con-
tener representaciones en píxeles de imágenes (entrada) y sus etiquetas anotadas
(por ejemplo, auto, motocicleta) como salida.

Estos pares de datos de entrenamiento se introducen en la red neuronal mediante
el uso de representaciones de entrada para hacer predicciones sobre las etiquetas de
salida. Los datos de entrenamiento proporcionan retroalimentación sobre la exacti-
tud de los pesos en la red neuronal dependiendo de qué tan bien coincida la salida
predicha (por ejemplo, la probabilidad de auto) para una entrada particular con la
etiqueta de salida anotada en los datos de entrenamiento.

Supongamos que tenemos un conjunto de datos de entrenamiento

D = {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))}
donde x(i) es la representación de entrada y y(i) es la etiqueta de salida correspon-
diente para el ejemplo i.

Una red neuronal toma la representación de entrada x(i) y produce una salida
predicha ŷ(i). Esto se puede expresar como una función f(x(i); θ), donde θ son los
parámetros (pesos) de la red neuronal [12].

La exactitud de la predicción se puede cuantificar utilizando una función de pér-
dida L(y(i), ŷ(i)), que mide la discrepancia entre la salida predicha y la etiqueta
de salida verdadera. La retroalimentación sobre la exactitud de los pesos en la red
neuronal se obtiene minimizando esta función de pérdida sobre el conjunto de datos
de entrenamiento.

Por lo tanto, el objetivo es encontrar los parámetros θ que minimicen la función
de pérdida promedio sobre todos los ejemplos de entrenamiento:

mı́n
θ

1
n

n∑

i=1
L(y(i), ŷ(i)) = mı́n

θ

1
n

n∑

i=1
L(y(i), f(x(i); θ))

Donde L(y(i), ŷ(i)) es una función de pérdida específica, como la entropía cruza-
da en el caso de la clasificación, y 1

n

∑n
i=1 L(y(i), ŷ(i)) es la pérdida promedio sobre

todos los ejemplos de entrenamiento [12].

7.1.1. Arquitectura general de las CNN. La arquitectura general de las CNN’s,
se componen de tres tipos de capas: las capas convolucionales, las capas de
agrupamiento (pooling) y las capas totalmente conectadas (fully-connected).

Capas de convolución: El nombre “red neuronal convolucional” indica que la
red utiliza una operación matemática llamada convolución. La convolución es un
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tipo especializado de operación lineal. Las redes convolucionales son simplemente
redes neuronales que utilizan la convolución en lugar de la multiplicación de matri-
ces general en al menos una de sus capas [13].

Sea x y w dos funciones continuas, el producto especial denotado por x ∗ w se
define mediante la integral

(7.1) s(t) = (x ∗ w)(t) =
∫ ∞

−∞
x(τ)w(t− τ) dτ

se llama convolución de x y w.
En la terminología de redes convolucionales, el primer argumento de la Eq. 7.1

de la convolución a menudo se denomina input y el segundo argumento (w) como
kernel [12].

Normalmente, según [12], cuando trabajamos con datos en una computadora, el
tiempo será discretizado. Si ahora asumimos que x y w están definidos solo en el
número entero t, podemos definir la convolución discreta como:

(7.2) S(i, j) = (K ∗ I)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m,n)

En aplicaciones de aprendizaje automático, la entrada suele ser un arreglo multi-
dimensional de datos y el kernel suele ser un arreglo multidimensional de parámetros
que son adaptados por el algoritmo de aprendizaje. Nos referiremos a estos arreglos
multidimensionales como tensores [12].

Debido a que cada elemento de la entrada y el kernel deben ser almacenados
explícitamente por separado, usualmente asumimos que estas funciones son cero en
todas partes excepto en el conjunto finito de puntos para los cuales almacenamos
los valores. Esto significa que en la práctica podemos implementar la sumatoria
infinita como una sumatoria sobre un número finito de elementos del arreglo.

Capa Pooling: La capa pooling realiza una operación de submuestreo sobre los
mapas de características con el fin de reducir su resolución espacial y aumentar
la robustez del modelo frente a pequeñas traslaciones o ruido. En el caso de max
pooling, la salida se define como

Yi,j = máx{Xp,q : (p, q) ∈ ventana(i, j)},
donde cada ventana corresponde a una región local (por ejemplo, 2×2) del mapa

de activaciones X. Esta operación conserva las características de mayor relevancia
mientras reduce la dimensionalidad [12] .

Capa Fully Connected: La capa fully connected (o densamente conectada) in-
tegra la información extraída por las capas convolucionales para producir la decisión
final del modelo. Implementa una transformación afín del tipo

y = Wx+ b,

donde x es el vector de características aplanado, W es la matriz de pesos y b es
el vector de sesgos. Esta capa se utiliza típicamente en las etapas finales de la red
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para tareas de clasificación o regresión [12].

De este modo, cada imagen It es procesada por un modelo CNN de detección
Fθ que devuelve un conjunto de cajas delimitadoras

Bt = {bt,i}Nt
i=1,

donde cada detección bt,i contiene:

bt,i = (xt,i, yt,i, wt,i, ht,i, ct,i, pt,i),
siendo:

(xt,i, yt,i): centro de la caja,
wt,i, ht,i: ancho y alto en píxeles,
ct,i: clase del objeto (vehículo),
pt,i: probabilidad o confianza asignada por la red.

8. Algoritmos de Seguimiento de Objetos

Una vez obtenidas las detecciones cuadro a cuadro mediante el modelo de detec-
ción Fθ, es necesario establecer correspondencias temporales entre ellas para cons-
truir trayectorias coherentes. Este proceso se conoce como seguimiento de objetos
(object tracking). En este trabajo se analizan dos enfoques distintos: un método
puramente geométrico basado en las salidas de la CNN y un método probabilístico
basado en el Filtro de Kalman combinado con el Algoritmo Húngaro.

8.1. Seguimiento Geométrico Basado en Detecciones. Cada objeto detec-
tado en un cuadro t está delimitado por una caja delimitadora o bounding box, la
cual se describe mediante sus coordenadas espaciales. El seguimiento entre cuadros
consecutivos se realiza utilizando el criterio denominado Índice de Unión sobre la
Intersección (Intersection over Union, IoU). De acuerdo con [11], para dos cajas
delimitadoras bt−1 y bt,i en los cuadros t− 1 y t, respectivamente, el IoU se define
como

IoU(bt−1, bt,i) =
Área

(
bt−1 ∩ bt,i

)

Área
(
bt−1 ∪ bt,i

) .

Este índice cuantifica el grado de superposición entre dos cajas: un valor alto
indica que ambas delimitan esencialmente la misma región en la imagen.

IoU : 0,403 IoU : 0,73 IoU : 0,98

ExcelenteBienDeficiente

Figura 2. IoU obtenido entre dos bounding boxes, con distintos
niveles de superposición

37



Para cada nuevo cuadro, se calcula el IoU entre la caja asociada al objeto seguido
en el cuadro anterior y cada una de las detecciones presentes en el cuadro actual.
A continuación, se selecciona la caja que maximiza la superposición:

b∗t = arg máx
bt,i

IoU(bt−1, bt,i).

Finalmente, se establece un umbral de decisión τ = 0,8 por ejemplo, de tal forma
que si

IoU(bt−1, b
∗
t ) ≥ τ,

entonces la detección b∗t se considera la continuación del mismo objeto en el cua-
dro t. En caso contrario, se descarta la asociación por no existir suficiente evidencia
geométrica de continuidad [11].

Este método presenta la ventaja de ser simple y computacionalmente eficiente,
basándose únicamente en la información geométrica contenida en los bounding bo-
xes. Sin embargo, su desempeño se ve afectado por oclusiones, cambios bruscos en
la forma de las cajas, o inconsistencias en las detecciones de la red neuronal.

8.2. Seguimiento Basado en Filtro de Kalman. Además del método geo-
métrico basado en IoU, es posible emplear un enfoque más robusto que combine
un modelo dinámico explícito con un algoritmo de asignación óptima. Este enfoque
es el utilizado en sistemas modernos de seguimiento como SORT y DeepSORT, los
cuales integran un Filtro de Kalman con el Algoritmo Húngaro.

En este caso, el movimiento de cada objeto se modela mediante un estado latente
xt que incluye su posición y velocidad en el plano de la imagen. El Filtro de Kalman
permite predecir la evolución del estado entre cuadros consecutivos mediante el
modelo lineal
(8.1) xt = Ft−1xt−1 + wt−1

(8.2) yt = Htxt + vt

donde xk y yk son los vectores de estado y de medición en el instante k. Las
matrices Fk y Hk representan, respectivamente, la matriz de transición del sistema
y la matriz de observación [9].

Los términos wk y vk corresponden al ruido del proceso y al ruido de medición.
Se asume que ambos son independientes, de media cero, ruido blanco Gaussiano, con
matrices de covarianza Qk y Rk, respectivamente wk ∼ N (0, Qk) y vk ∼ N (0, Rk)
[9]

Cuando el detector proporciona una medición zt, típicamente asociada a las
coordenadas del centro del bounding box, el filtro actualiza su estimación utilizando

zt = Hxt + vt,

donde H es la matriz de observación y vt es el ruido de medición con covarianza
R.
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Luego de obtener las predicciones del Filtro de Kalman para cada objeto rastreo
activo, es necesario asociarlas con las detecciones provenientes del modelo Fθ. Para
ello se construye una matriz de costos C, cuyas entradas representan la discrepan-
cia entre la predicción de cada objeto y cada detección nueva. Con esta matriz se
resuelve un problema de asignación óptima utilizando el Algoritmo Húngaro, obte-
niendo así la correspondencia entre objetos y detecciones en el cuadro actual. [10]

Esta combinación de predicción dinámica y asignación óptima permite manejar
oclusiones breves, detecciones perdidas y mediciones ruidosas, proporcionando un
seguimiento mucho más estable que el método basado únicamente en IoU. En par-
ticular, la incorporación de un modelo de movimiento evita saltos abruptos en la
trayectoria y permite mantener la identidad del objeto aun cuando su bounding box
varíe significativamente entre cuadros consecutivos.

9. Estimación de datos a escala real

Para poder trasladar las coordenadas obtenidas en la imagen hacia un sistema de
coordenadas métricas coherente con la carretera, es necesario describir de manera
precisa la transformación geométrica que relaciona ambos planos. Este proceso se
basa en una transformación proyectiva que modela cómo un plano tridimensional,
al ser observado desde una cámara, se representa como una superficie bidimensio-
nal en la imagen. Dicho mapeo se describe mediante una matriz de perspectiva que
captura la deformación generada por la proyección central de la cámara.

Según [1] ,la transformación proyectiva puede expresarse mediante el siguien-
te sistema, que relaciona las coordenadas del punto en la imagen (x, y) con las
coordenadas en escala real (u, v) :



w′u
w′v
w′


 =



a b c
d e f
g h 1





x
y
1


 .

El vector homogéneo (w′u, w′v, w′) incorpora la escala necesaria para preservar
la información de la perspectiva. Para recuperar las coordenadas físicas es suficiente
con normalizar

u = ax+ by + c

gx+ hy + 1 , v = dx+ ey + f

gx+ hy + 1 .

Los parámetros (a, b, c, d, e, f, g, h) contienen la información geométrica de la
proyección, tales como rotación, escala, traslación y deformación proyectiva. Su
determinación requiere comparar puntos de la imagen con sus equivalentes en la
escala real.

9.1. Obtención de los parámetros proyectivos. Para estimar estos pará-
metros es necesario contar con cuatro puntos visibles en la carretera, cuyas coor-
denadas se conocen tanto en píxeles (xi, yi) como en la escala real (ui, vi). Cada
correspondencia genera un sistema de dos ecuaciones [1]:

{
axi + byi + c− gxiui − hyiui = ui,

dxi + eyi + f − gxivi − hyivi = vi.
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Al utilizar cuatro puntos, se obtienen ocho ecuaciones lineales independientes
que permiten resolver el vector de parámetros

α = (a, b, c, d, e, f, g, h)T .
Este sistema puede resolverse mediante diversos métodos numéricos: eliminación

gaussiana, factorización LU, descomposición QR o inversión matricial, siempre que
la matriz asociada sea no singular. La singularidad puede producirse si los puntos
elegidos están mal distribuidos sobre la carretera, demasiado cercanos entre sí o
alineados de manera que no permitan reconstruir una perspectiva única [1].

El resultado de este proceso es una transformación proyectiva completamente
definida que permite convertir coordenadas de la imagen en posiciones métricas
directamente sobre la superficie de la carretera.

D(i4, j4 ) x

y

A′(i′1, j′1 ) B′(i′2, j′2 )

C ′(i′3, j′3 ) D′(i′4, j′4 )

y

A(i1, j1 ) B(i2, j2 )

C(i3, j3 ) D(i4, j4 )

Figura 3. Visualización de la región de interés dependiendo de la
perspectiva. La imagen a la izquierda corresponde a los puntos en
pixeles y a la derecha sus equivalentes en escala real (metros).

9.2. Conversión de píxeles a coordenadas reales. De acuerdo con [1], una
vez estimada la matriz proyectiva, cualquier punto de la imagen puede convertirse
a su ubicación real aplicando



ũ
ṽ
w̃


 = H



x
y
1


 ,

y normalizando

u = ũ

w̃
, v = ṽ

w̃
.

De esta forma, las coordenadas registradas por el sistema de visión en unidades
de píxeles se transforman en posiciones reales expresadas en metros, corregidas de
los efectos de la perspectiva de la cámara. Cada punto de seguimiento del vehículo
puede representarse ahora en un sistema de referencia físico directamente asociado
a la carretera.

Todo esto se realiza para que la trayectoria del vehículo en la imagen se con-
vierta en una curva sobre el plano real que pueda ser interpretable. Al trabajar
en coordenadas homogéneas, la transformación proyectiva conserva la estructura
geométrica de la escena, y la normalización garantiza que cada punto corresponda
a una ubicación verdadera sobre la carretera.
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10. Estimación de coeficientes de Regresión sobre la densidad
vehicular

Una vez obtenida la velocidad de los vehículos a partir de la detección, segui-
miento y proyección al plano real, el siguiente paso consiste en estimar la densidad
vehicular observable en la escena. En este contexto, la densidad se interpreta como
el número de vehículos presentes en un tramo específico de la carretera durante
un intervalo de tiempo. A diferencia de la velocidad, que se asocia al movimiento
individual de cada vehículo, la densidad es una magnitud colectiva que describe el
grado de ocupación de la vía.

La relación entre velocidad y densidad vehicular ha sido estudiada extensamente
como base para el análisis macroscópico del tráfico. Kerner [14] propone un esque-
ma de identificación empírica del diagrama fundamental del tráfico y demuestra, a
partir de datos observacionales, que dicha relación no es universal, lo que justifica
la necesidad de estimaciones contextuales como las que se plantean en este trabajo.

Para cuantificar la densidad vehicular se adopta la formulación empírica clásica
empleada en estudios macroscópicos de tráfico, en la cual la densidad se define
como el número total de vehículos que ocupan un tramo de carretera de longitud
determinada. Sea L > 0 la longitud fija de un tramo de carretera observado, y sea
I = [t, t+∆t] un intervalo de tiempo de observación. Denotamos por N(t) el número
de vehículos contenidos en el segmento espacial de longitud L en el instante t. La
densidad vehicular instantánea, entendida como una función escalar del tiempo, se
define como

ρ(t) = N(t)
L

, t ∈ I.
Esta expresión corresponde a la definición empírica adoptada en modelos macroscó-
picos de flujo vehicular, como los estudiados por Kerner [14]. En dicho marco, ρ(t)
representa una variable de estado cuya evolución describe el grado de ocupación de
la vía en función del tiempo. Su estimación, junto con la velocidad media v(t), per-
mite caracterizar el estado dinámico del sistema vehicular en el tramo considerado.

Una vez teniendo las estimaciones de velocidad y densidad posibilita el estu-
dio de su relación funcional, que en el contexto del análisis de tráfico se modela
frecuentemente mediante una regresión entre v(t) y ρ(t). Esta relación, denotada
típicamente por v = f(ρ), nos permitirá realizar estimación de los coeficientes de
un modelo de regresión.
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11. Conclusiones

Este proyecto establece una estructura metodológica para abordar la estimación
de velocidad vehicular y su relación funcional con la densidad del tráfico, integrando
técnicas de visión por computadora con herramientas estadísticas. El enfoque con-
templa el uso de redes neuronales convolucionales (CNN) como mecanismo principal
para la detección automática de vehículos a partir de secuencias de video, generan-
do identificaciones cuadro a cuadro en el plano imagen.

Sobre estas detecciones se plantea la implementación de algoritmos de seguimien-
to, tanto geométricos como probabilísticos, con el objetivo de construir trayectorias
temporales coherentes para cada vehículo. El seguimiento se concibe como un pro-
ceso de asociación entre detecciones sucesivas, y su formulación incluye técnicas
como el Índice de Unión sobre Intersección (IoU), el Filtro de Kalman y el Algo-
ritmo Húngaro. Estos métodos permiten resolver la correspondencia temporal bajo
condiciones de oclusión, variabilidad geométrica o ruido en las detecciones.

Una vez definidas las trayectorias en el plano imagen, se proyectarán sobre un sis-
tema de coordenadas métricas mediante una transformación homográfica calibrada
con puntos de control en la escena. A partir de estas trayectorias físicas, se plantea
calcular la velocidad vehicular mediante derivación numérica del desplazamiento,
ajustada a escala real.

De forma complementaria, se define la densidad vehicular como una función esca-
lar en el tiempo, calculada a partir del número de vehículos por unidad de longitud
en una región espacial fija. Esta magnitud, junto con la velocidad, permite carac-
terizar el estado macroscópico del sistema vehicular.

La disponibilidad conjunta de las variables v(t) y ρ(t) permite formular una re-
lación funcional que será modelada mediante regresión, con el objetivo de estimar
coeficientes que describan empíricamente el comportamiento del flujo vehicular.
Estos coeficientes podrán ser utilizados como insumos en modelos basados en ecua-
ciones diferenciales parciales.

En conjunto, la estructura planteada proporciona un marco metodológico para
la generación de datos observacionales y su integración en modelos de dinámica
vehicular.
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UNA REVISIÓN BIBLIOGRÁFICA SOBRE RANDOM FOREST
(BOSQUES ALEATORIOS)

ALLAN MAURICIO CÓRDOVA MARTÍNEZ

Resumen. En este artículo se presenta una revisión bibliográfica sobre Ran-
dom Forest, un algoritmo de aprendizaje automático para clasificación y re-
gresión. Random Forest combina múltiples árboles de decisión para mejorar
precisión, estabilidad y generalización, entrenando cada árbol con una muestra
aleatoria y un subconjunto de variables, lo que reduce la correlación entre ellos
y previene el sobreajuste. Las predicciones se obtienen por votación en clasifi-
cación o por promedio en regresión, haciéndolo robusto frente a ruido y datos
incompletos. Además, permite identificar variables relevantes, consolidándose
como una técnica versátil y confiable en contextos complejos. Sus aplicacio-
nes incluyen medicina y bioinformática, finanzas, marketing, ingeniería, medio
ambiente y ciencias sociales.
Abstract. This article presents a bibliographic review of Random Forest, a
machine learning algorithm for classification and regression. Random Forest
combines multiple decision trees to improve accuracy, stability, and genera-
lization, training each tree with a random sample of the data and a subset
of variables, which reduces correlation among trees and prevents overfitting.
Predictions are obtained by voting in classification or by averaging in regres-
sion, making the method robust to noise and incomplete data. Additionally, it
allows the identification of relevant variables, establishing it as a versatile and
reliable technique in complex contexts. Its applications include medicine and
bioinformatics, finance, marketing, engineering, environmental sciences, and
social sciences.

1. Introducción

En la actualidad, el volumen y la complejidad de los datos generados en los ámbi-
tos social, económico y ambiental exigen herramientas analíticas capaces de procesar
información masiva y extraer patrones relevantes de manera eficiente y confiable.
En este contexto, los bosques aleatorios (Random Forests) [4] se consolidan como
una de las metodologías más robustas del aprendizaje estadístico moderno, debido
a su capacidad para combinar múltiples árboles de decisión y generar modelos de
alta precisión, estabilidad y generalización.

El algoritmo Random Forest, propuesto por Leo Breiman en 2001 [4], pertenece
a la familia de métodos de aprendizaje en conjunto (ensemble learning), los cuales
buscan mejorar el desempeño de los modelos individuales mediante la agregación
de múltiples clasificadores o regresores. A diferencia de los árboles de decisión tra-
dicionales, los bosques aleatorios introducen aleatoriedad tanto en la selección de
los datos como de las variables, reduciendo la correlación entre los árboles y, en con-
secuencia, la varianza del modelo final. Esta característica los hace especialmente

Fecha: Diciembre 2025.
Palabras y frases clave. Random Forest, aprendizaje automático, clasificación y regresión,

árboles de decisión.
1
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útiles en escenarios donde existen relaciones no lineales, alta dimensionalidad o
presencia de ruido en los datos.

El presente trabajo tiene como objetivo principal analizar los fundamentos
teóricos y metodológicos del algoritmo Random Forest, destacando su relevancia
en el análisis estadístico y su potencial aplicación en problemáticas nacionales. En
particular, se busca describir su funcionamiento, las medidas de pureza utilizadas
en la construcción de árboles, los criterios de importancia de variables y otras
definiciones muy importantes obtenidas a partir de revisiones bibliográficas.

Desde una perspectiva aplicada, el estudio de los bosques aleatorios adquiere gran
importancia en el contexto hondureño, ya que su implementación en investigacio-
nes sociales, económicas y ambientales permite abordar con mayor rigor científico
desafíos prioritarios del país, tales como la medición de la pobreza, la planificación
territorial, la seguridad alimentaria y el análisis educativo. Asimismo, el fortale-
cimiento de las capacidades nacionales en ciencia de datos e inteligencia artificial
contribuye al desarrollo de competencias técnicas avanzadas y al impulso de la in-
vestigación científica en la Universidad Nacional Autónoma de Honduras (UNAH).

2. Justificación

Random Forest (Bosques Aleatorios) [4] es un algoritmo de conjunto que
combina múltiples árboles de decisión para generar predicciones más precisas y ro-
bustas. Su capacidad para manejar grandes volúmenes de datos, identificar patrones
complejos y realizar predicciones confiables lo convierte en una herramienta inva-
luable para el análisis de fenómenos sociales, económicos y ambientales que afectan
al país.

En el escenario hondureño, Bosques Aleatorios puede afrontar diversos retos
nacionales fundamentales:

1. Análisis de Pobreza y Desigualdad: Mediante el procesamiento de datos
socioeconómicos, el algoritmo puede identificar factores determinantes de la po-
breza, predecir áreas de riesgo social y evaluar el impacto de políticas públicas,
contribuyendo a la focalización eficaz de programas sociales.

2. Planificación Territorial y Desarrollo: La técnica permite examinar pa-
trones de expansión urbana, mejorar la distribución de la infraestructura y prever
necesidades de servicios básicos en diferentes regiones del territorio nacional

3. Seguridad Alimentaria: A través del análisis de variables climáticas, so-
cioeconómicas y productivas, Bosques Aleatorios puede predecir zonas o áreas de
vulnerabilidad alimentaria y optimizar estrategias de seguridad nutricional.

4. Educación y Desarrollo Humano: El algoritmo puede identificar factores
de deserción escolar, predecir rendimiento académico y optimizar la asignación de
recursos educativos, contribuyendo al fortalecimiento del capital humano nacional.

La implementación de Bosques Aleatorios en investigaciones nacionales fortalece
las capacidades científicas del país en el área de ciencia de datos e inteligencia artifi-
cial, campos emergentes de gran importancia a nivel global. Esta técnica representa
una oportunidad para que Honduras desarrolle competencias técnicas avanzadas,
genere conocimiento aplicado y contribuya a la producción científica regional en
metodologías cuantitativas.
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Por las razones ya mencionadas, la investigación en Bosques Aleatorios se sitúa
dentro del Eje de Investigación : Población y Condiciones de Vida, específi-
camente en el tema prioritario: b) Cultura, ciencia y educación de las líneas
de investigación de la Universidad Nacional Autónoma de Honduras (UNAH) , ya
que representa una contribución al desarrollo científico-tecnológico nacional que
impulsa las capacidades investigativas del país y crea herramientas aplicables pa-
ra la solución de diversas problemáticas nacionales primordiales. Tambien Random
Forest (Bosques Aleatorios) pertenece a la familia de modelos de aprendizaje super-
visado, más específicamente dentro de los modelos de ensamble (ensemble methods),
y aún más concretamente, de los métodos de bagging (bootstrap aggregating).Se
encuentra en la línea de investigación de Modelación Matemática (Maestría
en Matemática con Orientación en Ingeniería Matématica de la UNAH).

3. Antecedentes

El tema de los Random Forest (bosques aleatorios) ha evolucionado a partir de
los árboles de decisión y los métodos de agregación estadística.Un resumen histórico
sobre su desarrollo, los principales autores involucrados y los aportes más recientes
a la teoría se muestran a continuación:

3.1. Orígenes y desarrollo histórico. Los primeros trabajos que dieron ori-
gen a los bosques aleatorios se encuentran en los estudios sobre árboles de decisión,
particularmente el método CART (Classification And Regression Trees) pro-
puesto por Breiman, Friedman, Olshen y Stone (1984). Este enfoque estableció las
bases para construir modelos interpretables, aunque con alta varianza y sensibilidad
a los datos.

Posteriormente, Leo Breiman propuso en 1996 el método Bagging (Bootstrap
Aggregating) [1], que consistía en generar múltiples conjuntos de entrenamiento
mediante remuestreo con reemplazo, entrenar varios modelos y combinar sus pre-
dicciones mediante promedio o voto mayoritario, reduciendo así la varianza de los
árboles individuales.

De forma paralela, Tin Kam Ho introdujo en 1995 el Random Subspace Method
[2], que sugiere entrenar clasificadores en subespacios aleatorios de las características
disponibles, reduciendo la correlación entre los árboles. Más adelante, Amit y
Geman (1997) extendieron la idea de aleatorizar tanto la selección de variables
como los puntos de corte en los nodos [3].

3.2. Formalización de Random Forests. En 2001, Leo Breiman consolidó
todas estas ideas en su influyente artículo Random Forests [4], en el que formalizó
un método de ensemble learning que combina árboles de decisión entrenados so-
bre muestras bootstrap y subconjuntos aleatorios de variables. Además, introdujo
la estimación del error de generalización mediante observaciones fuera de la bol-
sa (out-of-bag, OOB) y la medición de la importancia de las variables mediante
permutación.

Breiman también estableció fundamentos teóricos que relacionan el error de ge-
neralización con la fuerza promedio de los clasificadores individuales y la correlación
media entre ellos, mostrando que un equilibrio entre ambos factores produce mo-
delos más robustos y precisos [4].
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3.3. Desarrollos teóricos recientes. Durante las dos últimas décadas, se han
producido importantes avances en el análisis teórico y en las variantes del método.
Biau, Devroye y Lugosi (2008) demostraron resultados de consistencia para
bosques aleatorios y variantes simplificadas, estableciendo una base teórica sólida
para su comportamiento asintótico [5].

Recientemente, se han propuesto múltiples extensiones y mejoras del enfoque
original de Breiman:

Chen, Wang y Lei (2024) presentaron el Data-driven Multinomial Random
Forest, una variante con consistencia fuerte y formulación multinomial más
estable [6].
Dorador (2024) propuso estrategias de Forest Pruning para eliminar árboles
redundantes sin pérdida de precisión [7].
Ignatenko, Surkov y Koltcov (2024) desarrollaron Random Forests con
criterios de información basados en entropías paramétricas, mejorando la
calidad de las divisiones [8].
Ren, Zhu, Bai y Zhang (2024) introdujeron el modelo Intuitionistic Fuzzy
Random Forest, que combina conjuntos difusos con aprendizaje de bosques
[9].
Konstantinov, Utkin, Lukashin y Muliukha (2023) propusieron los
Neural Attention Forests, que integran mecanismos de atención derivados de
redes neuronales [10].

Estos trabajos reflejan la tendencia actual hacia modelos combinados más efi-
cientes, capaces de manejar incertidumbre y datos de alta dimensionalidad, man-
teniendo la esencia del enfoque propuesto por Breiman en 2001.

Cuadro 1. Evolución histórica y desafíos de Random Forest

Etapa / Autor Contribución principal Desafíos actuales
CART (1984) [11] Base de los árboles de decisión Alta varianza
Bagging (Breiman, 1996)
[1]

Reducción de varianza Falta de diversidad entre mode-
los

Random Subspace (Ho,
1995)

Selección aleatoria de variables Sensibilidad a parámetros

Random Forest (Breiman,
2001) [4]

Combinación bagging + aleato-
riedad

Interpretabilidad limitada

Avances recientes (2023–
2024)

Consistencia fuerte, integración
con redes neuronales y lógica di-
fusa

Escalabilidad y eficiencia

3.4. Síntesis comparativa. En resumen, los bosques aleatorios constituyen una
de las técnicas más exitosas y versátiles del aprendizaje estadístico moderno. Su
robustez, precisión y facilidad de uso han llevado a su aplicación en prácticamente
todas las áreas de la ciencia de datos, y continúan siendo objeto de investigación
activa en teoría estadística y optimización computacional.
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4. Conceptos Preliminares

Leo Breiman en su artículo Random Forest (2001) [4], compara resultados obte-
nidos con modelos ya antes establecidos como ser:

Adaboost (Adaptive Boosting): Propuesto por Freud y Shapire en 1996,
es un algoritmo determinista que ajusta iterativamente los pesos del conjun-
to de entrenamiento. En cada iteración, las observaciones mal clasificadas
reciben un mayor peso, de modo que los clasificadores posteriores se enfo-
quen en los errores cometidos por los anteriores. La predicción final es una
combinación ponderada de todos los clasificadores entrenados, lo que reduce
el sesgo y mejora la precisión.

El método Bagging (Bootstrap Aggregating) es el antecesor de Random
Forest y fue propuesto por Breiman en 1996 [1]. Es un método general de
reducción de la varianza que se basa en el remuestreo bootstrap (con reem-
plazo) junto con un modelo de regresión o clasificación. Su procedimiento se
puede resumir en los siguientes pasos:
1. Se generan múltiples subconjuntos de entrenamiento mediante remues-

treo con reemplazo del conjunto original.
2. Se entrena un modelo (por ejemplo, un árbol de decisión) en cada sub-

conjunto.
3. Para predecir una nueva observación, se promedian (en regresión) o se

votan (en clasificación) las predicciones de los distintos modelos.
Este proceso produce un estimador más estable, especialmente útil para

modelos con alta varianza como los árboles de decisión. El Bagging es una
técnica fundamental en el aprendizaje en conjunto (ensemble learning), y
sentó las bases teóricas sobre las que más tarde se construiría el método
Random Forest.

Los árboles de decisión son modelos jerárquicos de aprendizaje automático
utilizados tanto para tareas de clasificación como de regresión. Su estructura
divide recursivamente el espacio de los predictores en regiones homogéneas
respecto a la variable respuesta. Algunas definiciones basicas son:
1. Nodo raíz: punto inicial que contiene el conjunto completo de datos.
2. Nodos internos: condiciones o preguntas basadas en características de

los datos.
3. Ramas: conexiones entre nodos que representan las respuestas a dichas

condiciones.
4. Hojas: representan las decisiones o predicciones finales.

Una de las principales ventajas de los árboles de decisión es su interpre-
tabilidad, ya que pueden visualizarse fácilmente y las reglas de decisión se
expresan de forma lógica y transparente. No obstante, un solo árbol tiende
a tener alta varianza: pequeños cambios en los datos pueden alterar signifi-
cativamente la estructura del árbol.

En síntesis, las ideas de Bagging, selección aleatoria de variables y el método
CART se unifican en el algoritmo de Random Forest, pero con una gran mejora en
robustez y capacidad de generalización.
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5. Estimación mediante Bosques Aleatorios

El término “bosques aleatorios” (random forests) tiene diferentes interpretacio-
nes según el contexto. Algunos investigadores lo utilizan como un término general
para cualquier método que combine múltiples árboles de decisión con componentes
aleatorios, sin importar la técnica específica de construcción. Otros autores lo re-
servan exclusivamente para el algoritmo desarrollado por Breiman en 2001 [4]. En
este documento, adoptaremos principalmente esta segunda perspectiva.

Los bosques aleatorios son lo suficientemente flexibles para resolver dos tipos
de problemas: clasificación supervisada (asignar categorías) y regresión (predecir
valores numéricos). Para facilitar la comprensión inicial, se enfocara en problemas
de regresión y posteriormente se revisara brevemente el caso de clasificación. El
objetivo es presentar el algoritmo de manera clara y matemáticamente rigurosa.

El contexto general es el de la regresión no paramétrica. Observamos una variable
de entrada aleatoria X ∈ X ⊂ Rp y queremos predecir una respuesta numérica
aleatoria Y ∈ R estimando la función de regresión:

m(x) = E[Y | X = x].
Para lograr esto, disponemos de un conjunto de entrenamiento:

Dn = ((X1, Y1), . . . , (Xn, Yn))
compuesto por variables aleatorias independientes con la misma distribución que el
par prototipo (X, Y ). La meta u objetivo es utilizar estos datos para construir un
estimador mn : X → R que aproxime la función m.

Decimos que el estimador mn es consistente en error cuadrático medio si:
E[(mn(X) − m(X))2] → 0 cuando n → ∞,

donde la esperanza considera tanto la aleatoriedad de X como la de la muestra Dn.
Un bosque aleatorio es esencialmente una colección de M árboles de regresión,

cada uno construido con cierta aleatoriedad. Para el árbol número j en esta colec-
ción, el valor predicho en un punto x se denota:

mn(x; Θj , Dn),
donde Θ1, . . . , ΘM son variables aleatorias independientes e idénticamente distri-
buidas.

La variable aleatoria Θ es independiente del conjunto de entrenamiento Dn y se
utiliza para introducir dos tipos de aleatoriedad: primero, para remuestrear (selec-
cionar aleatoriamente un subconjunto de) los datos antes de construir cada árbol;
segundo, para seleccionar qué variables considerar al hacer cada división en el árbol.

Matemáticamente, cada árbol individual predice mediante:

mn(x; Θj , Dn) =
∑

i∈D∗
n(Θj)

1{Xi∈An(x;Θj ,Dn)} Yi

Nn(x; Θj , Dn) ,

donde:
D∗

n(Θj) representa el subconjunto de datos seleccionados para construir este
árbol (la muestra remuestreada),
An(x; Θj , Dn) es la región o celda terminal del árbol que contiene al punto
x, y
Nn(x; Θj , Dn) es la cantidad de puntos (de los seleccionados) que caen dentro
de esa celda.
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En términos simples, cada árbol particiona el espacio de características en re-
giones (como dividir un mapa en zonas), y para predecir en un punto nuevo x,
encuentra en qué región cae y promedia los valores Y de los puntos de entrena-
miento en esa región.

La predicción final del bosque con M árboles se obtiene promediando:

(1) mM,n(x; Θ1, . . . , ΘM ; Dn) = 1
M

M∑

j=1
mn(x; Θj ; Dn).

En la implementación estándar de R (paquete randomForest) [60], el valor pre-
determinado es ntree = 500, es decir, se construyen 500 árboles. Como podemos
elegir M tan grande como queramos (limitado solo por recursos computacionales),
tiene sentido desde el punto de vista teórico considerar el límite cuando M tiende
a infinito:

m∞,n(x; Dn) = EΘ[mn(x; Θ; Dn)].
Aquí, EΘ denota el valor esperado respecto a la aleatoriedad de Θ, dado el

conjunto de datos Dn. La ley de los grandes números justifica esta operación, esta-
bleciendo que:

ĺım
M→∞

mM,n(x; Θ1, . . . , ΘM ; Dn) = m∞,n(x; Dn)

casi seguramente, dado Dn.
Para simplificar la notación se escribirá simplemente m∞,n(x) en lugar de m∞,n(x; Dn).

6. Descripción del Algoritmo

El procedimiento para construir un bosque aleatorio con M árboles es el siguien-
te:

Paso 1: Remuestreo previo. Antes de construir cada árbol, se seleccionan
aleatoriamente an observaciones del conjunto original, ya sea con o sin reemplazo.
Únicamente estas an observaciones se utilizarán para construir y hacer predicciones
con ese árbol particular.

Paso 2: Construcción del árbol mediante divisiones aleatorias. En cada
nodo del árbol, el algoritmo no considera todas las p variables disponibles, sino que
selecciona aleatoriamente un subconjunto de mtry variables. Entre estas variables
seleccionadas, elige la que produce la mejor división según el criterio CART .

Paso 3: Criterio de parada. La construcción de cada árbol continúa hasta
que cada nodo terminal (hoja) contiene menos de nodesize observaciones.

Paso 4: Predicción individual. Para un nuevo punto x, cada árbol predice
promediando los valores Yi de las observaciones cuyos Xi caen en la misma celda
terminal que x.

Paso 5: Agregación. La predicción final se obtiene promediando las prediccio-
nes de todos los árboles.

El Algoritmo 1 describe formalmente este proceso.

Algoritmo 1. Construcción y predicción de un bosque aleatorio.
1. Entrada: Datos Dn = {(Xi, Yi)}n

i=1, número de árboles M , parámetros an,
mtry, nodesize.

2. Para cada árbol j = 1, . . . , M :
a) Seleccionar aleatoriamente an observaciones de Dn (con o sin reemplazo).
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b) Construir un árbol de regresión:
En cada nodo, seleccionar aleatoriamente mtry variables de las p
disponibles.
Encontrar la mejor división entre estas mtry variables usando el
criterio CART.
Continuar dividiendo hasta que cada nodo terminal tenga menos de
nodesize observaciones.

c) Almacenar el árbol resultante mn(x; Θj , Dn).
3. Salida: Predicción final mediante promedio: mM,n(x; Dn) = 1

M

∑M
j=1 mn(x; Θj , Dn).

Aunque pueda parecer complejo inicialmente, el algoritmo se basa en ideas sim-
ples. Los tres parámetros clave son:

1. an ∈ {1, . . . , n}: Tamaño de la submuestra para cada árbol;
2. mtry ∈ {1, . . . , p}: Número de variables candidatas consideradas en cada

división;
3. nodesize ∈ {1, . . . , an}: Tamaño mínimo de nodo (criterio de parada).

En el modo de regresión de randomForest en R, los valores predeterminados son:
mtry = ⌈p/3⌉, an = n (usar todos los datos con reemplazo, es decir, bootstrap), y
nodesize = 5.

Forma extendida del algoritmo:

Algoritmo 1 Valor predicho del bosque aleatorio de Breiman en x.
Entrada: Conjunto de entrenamiento Dn, número de árboles M > 0, an ∈ {1, . . . , n}, mtry ∈
{1, . . . , p}, nodesize ∈ {1, . . . , an} y x ∈ X .

Salida: Predicción del bosque aleatorio en x.
1: para j = 1, . . . , M hacer
2: Seleccionar an puntos, con (o sin) reemplazo, uniformemente en Dn. En los siguientes

pasos, solo se usan estas an observaciones.
3: Sea P = (X ) la lista que contiene la celda asociada con la raíz del árbol.
4: Sea Pfinal = ∅ una lista vacía.
5: mientras P ̸= ∅ hacer
6: Sea A el primer elemento de P.
7: si A contiene menos de nodesize puntos o si todos los Xi ∈ A son iguales entonces
8: Eliminar la celda A de la lista P.
9: Pfinal ← Concatenar(Pfinal, A).

10: si no
11: Seleccionar uniformemente, sin reemplazo, un subconjunto Mtry ⊂ {1, . . . , p} de

cardinalidad mtry.
12: Seleccionar la mejor división en A optimizando el criterio de división CART a lo

largo de las coordenadas en Mtry (ver texto para detalles).
13: Dividir la celda A según la mejor división. Llamar AL y AR a las dos celdas resul-

tantes.
14: Eliminar la celda A de la lista P.
15: P ← Concatenar(P, AL, AR).
16: fin si
17: fin mientras
18: Calcular el valor predicho mn(x; Θj ,Dn) en x igual al promedio de los Yi que caen en la

celda de x en la partición Pfinal.
19: fin para
20: Calcular la estimación del bosque aleatorio mM,n(x; Θ1, . . . , ΘM ,Dn) en el punto x de acuerdo

con (2)
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El criterio de división CART. [11]
Por simplicidad, consideremos primero un árbol sin remuestreo que usa todos los

datos Dn.
Sea A una celda (región) cualquiera, y sea Nn(A) el número de puntos que caen

en A. Una división potencial en A se define por un par (j, z), donde:
j es el índice de una variable (coordenada) en {1, . . . , p}
z es el valor umbral de corte en esa coordenada

Denotemos por CA el conjunto de todas las divisiones posibles en A, y sea Xi =
(X(1)

i , . . . , X
(p)
i ).

Para cualquier división candidata (j, z) ∈ CA, el criterio CART de regresión
mide la reducción en varianza lograda por la división:
(6.1)

Lreg,n(j, z) = 1
Nn(A)

n∑

i=1
(Yi−ȲA)2 1{Xi∈A}− 1

Nn(A)

n∑

i=1

(
Yi − ȲAL

1{X
(j)
i

<z} − ȲAR
1{X

(j)
i

≥z}

)2
1{Xi∈A},

donde:
AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z},

y ȲA, ȲAL
, ȲAR

representan el promedio de los valores Yi en las regiones A, AL y AR

respectivamente. Por convención, si ningún punto cae en una región, su promedio
se define como 0.
La mejor división (j⋆

n, z⋆
n) para la celda A se encuentra maximizando:

(j⋆
n, z⋆

n) ∈ arg máx
j∈Mtry,(j,z)∈CA

Lreg,n(j, z).

En caso de empate, se elige el punto medio entre dos observaciones consecutivas.
Este procedimiento se adapta naturalmente al caso con remuestreo, optimizando
sobre las an observaciones seleccionadas en lugar de todo Dn.

En resumen, el algoritmo en cada nodo: (1) selecciona aleatoriamente mtry coorde-
nadas, (2) evalúa el criterio (2) para todas las divisiones posibles en esas direcciones,
y (3) selecciona la mejor. Este criterio, introducido por Breiman et al. (1984) [27]
en el algoritmo CART, mide esencialmente cuánto disminuye la varianza al realizar
una división.

Existen tres diferencias fundamentales entre CART [11] tradicional y los bosques
aleatorios de Breiman:

1. Selección aleatoria de variables: En bosques aleatorios, solo se conside-
ran mtry variables seleccionadas aleatoriamente en cada división, no todas
las p variables.

2. Sin poda: Los árboles individuales crecen completamente hasta que cada
nodo terminal contiene como máximo nodesize observaciones (o todos los
puntos son idénticos).

3. Remuestreo: Cada árbol se construye con una submuestra de an observa-
ciones. Cuando an = n con reemplazo, tenemos el modo bootstrap; cuando
an < n, tenemos submuestreo.

6.1. Clasificación Supervisada. Para mayor claridad, se enfocará en clasifica-
ción binaria, aunque los bosques aleatorios pueden manejar naturalmente problemas
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multiclase. En este contexto, la variable de respuesta Y toma valores en {0, 1} y el
objetivo es predecir Y dado X.

Un clasificador mn es una función medible que intenta estimar la etiqueta Y a
partir de X y los datos Dn. Se considera consistente si su probabilidad de error
converge a la del clasificador óptimo de Bayes:

L(mn) = P[mn(X) ̸= Y ] −−−−→
n→∞

L⋆,

donde L⋆ es el error del clasificador de Bayes:

m⋆(x) =





1, si P[Y = 1 | X = x] > P[Y = 0 | X = x],

0, en otro caso.

En clasificación, el bosque aleatorio realiza un voto por mayoría entre los árboles:

mM,n(x; Θ1, . . . , ΘM , Dn) =





1, si 1
M

M∑
j=1

mn(x; Θj , Dn) >
1
2 ,

0, en otro caso.

Cada árbol individual clasifica usando voto mayoritario en su celda terminal:

mn(x; Θj , Dn) =





1, si hay más puntos de clase 1 que de clase 0 en la celda de x,

0, en otro caso.

Más formalmente, para una región A:

mn(x; Θj , Dn) =





1, si
∑

i∈D∗
n(Θ)

1{Xi∈A, Yi=1} >
∑

i∈D∗
n(Θ)

1{Xi∈A, Yi=0}, x ∈ A,

0, en otro caso.

El criterio CART para clasificación se modifica para medir la pureza de nodos.
Para una celda A, sean p0,n(A) y p1,n(A) las proporciones empíricas de las clases 0
y 1. El criterio de división es:
(6.2)

Lclass,n(j, z) = p0,n(A)p1,n(A)−Nn(AL)
Nn(A) p0,n(AL)p1,n(AL)−Nn(AR)

Nn(A) p0,n(AR)p1,n(AR),

Este criterio se basa en el índice de impureza de Gini 2p0,n(A)p1,n(A), que
mide qué tan mezcladas están las clases en un nodo. Un nodo puro (todos de la
misma clase) tiene Gini = 0, mientras que un nodo con 50 % tiene el valor máximo.

Para clasificación binaria (Y ∈ {0, 1}), optimizar Lclass,n es equivalente a opti-
mizar Lreg,n, por lo que los árboles resultantes son idénticos. La diferencia está en
la predicción: clasificación usa voto mayoritario, regresión usa promedio.

Los valores recomendados para clasificación son: nodesize = 1 y mtry = √
p.

6.2. Ajuste de Parámetros. La literatura sobre el ajuste óptimo de M , mtry,
nodesize y an es limitada, con contribuciones notables de Díaz-Uriarte y de An-
drés (2006) [41], Bernard et al. (2008) [20] y Genuer et al. (2010) [44]. El ajuste
de parámetros puede ser computacionalmente costoso, especialmente con grandes
conjuntos de datos.
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Número de árboles (M): La varianza del bosque disminuye al aumentar M ,
y más árboles generalmente mejoran las predicciones. Importante: aumentar M no
causa sobreajuste. Siguiendo a Breiman (2001) [4]:

ĺım
n→∞

E
[
(mM,n(X; θ1, . . . , θM ) − m(X))2

]
= E

[
(m∞,n(X) − m(X))2

]

El costo computacional crece linealmente con M , por lo que se busca un equi-
librio entre precisión y tiempo de cómputo. Díaz-Uriarte y de Andrés (2006) [41]
argumentan que M es irrelevante (siempre que sea suficientemente grande) en pro-
blemas de microarrays. Genuer et al. (2010) [44] ofrecen una discusión exhaustiva
sobre este parámetro.

Tamaño mínimo de nodo (nodesize): Los valores predeterminados (1 para
clasificación, 5 para regresión) son generalmente buenos, aunque carecen de respaldo
teórico riguroso. Kruppa et al. (2013) [54] discuten un algoritmo para ajustar este
parámetro en clasificación.

Número de variables por división (mtry): Díaz-Uriarte y de Andrés (2006)
[41] encuentran que mtry tiene poco impacto, aunque valores muy grandes pueden
reducir el rendimiento. Genuer et al. (2010) [44] sugieren que el valor predetermi-
nado a menudo es óptimo o demasiado pequeño, por lo que un enfoque conservador
es usar mtry tan grande como sea computacionalmente factible.

Una ventaja importante: los parámetros se pueden ajustar usando la estimación
out-of-bag (OOB), sin necesitar un conjunto de validación separado. Como cada
árbol se construye con una muestra bootstrap, aproximadamente un tercio de las
observaciones quedan fuera y pueden usarse como conjunto de prueba interno. El
error OOB, calculado sobre estas observaciones excluidas, permite ajustar paráme-
tros de manera eficiente.

7. Modelos Simplificados y Promedios Locales

7.1. Modelos Simplificados. A pesar de su uso extensivo, existe una brecha
entre la teoría y la práctica de los bosques aleatorios. La complejidad del algoritmo
completo dificulta el análisis matemático riguroso de sus propiedades fundamenta-
les.

Como observó Denil et al. (2014) [39], esto ha creado una división en la literatura:
los trabajos empíricos proponen extensiones elaboradas sin garantías teóricas claras,
mientras que los trabajos teóricos se enfocan en versiones simplificadas donde el
análisis es más manejable.

Un marco básico para el análisis teórico involucra bosques aleatorios puros,
donde los árboles se construyen independientemente de los datos de entrenamiento
Dn. El ejemplo más estudiado es el bosque centrado, que opera así:

1. Sin remuestreo (se usan todos los datos);
2. En cada nodo, se selecciona uniformemente una coordenada de {1, . . . , p};
3. Se divide en el centro de la celda a lo largo de esa coordenada.

Este proceso se repite recursivamente k veces, produciendo un árbol binario
completo con 2k hojas. El parámetro k controla el tamaño de las celdas finales
y actúa como parámetro de suavizado: debe ser lo suficientemente grande para
capturar variaciones locales, pero no tanto que impida el promediado efectivo.

Los bosques uniformes son una variante donde los cortes se realizan en posi-
ciones aleatorias uniformes en lugar del centro, con análisis matemático similar.
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Breiman (2004) [31], Biau et al. (2008) [23] y Scornet (2015a) [71] demostraron
que los bosques centrados son consistentes (para clasificación y regresión) siempre
que k → ∞ y n

2k → ∞ simultáneamente. La demostración se basa en resultados
generales de consistencia para árboles aleatorios [40].

Si X es uniforme en [0, 1]p, hay en promedio n
2k puntos por nodo terminal. La

elección k ≈ log n (árboles completamente crecidos) no satisface n
2k → ∞, revelando

una limitación del análisis. Además, como no hay bagging, la consistencia proviene
del árbol individual, no del ensamble.

Para tasas de convergencia, Breiman (2004) [31] y Biau (2012) [22] consideran
variables X(j) independientes con función de regresión m(x) que depende solo de un
subconjunto S (Strong) de variables. Si la probabilidad de dividir según la variable
j tiende a 1/|S| y m es Lipschitz, entonces:

E
[
m∞,n(X) − m(X)

]2 = O
(

n−0,75/(|S| log 2+0,75)
)

.

Esto muestra que la tasa depende solo de |S| (variables relevantes), no de p
(dimensión total), demostrando adaptación a esparsidad. Esta tasa es más rápida
que la tasa estándar n−2/(p+2) cuando |S| ≤ ⌊0,54 p⌋.

Genuer (2012) [45] estudia bosques puramente uniformes (PURF) en una
dimensión, demostrando consistencia y, bajo suposiciones Lipschitz, la tasa:

E
[
m∞,n(X) − m(X)

]2 = O
(
n−2/3),

que es minimax óptima para funciones Lipschitz [75, 76].
Biau (2012) [22] muestra que los bosques centrados reducen el error de estimación

(a tasa lenta 1/ log n) incluso con árboles completamente crecidos (k ≈ log n),
un beneficio del promediado. Arlot y Genuer (2014) [16] demuestran que ciertos
bosques también mejoran la tasa de error de aproximación comparado con árboles
individuales.

7.2. Bosques, Vecinos y Kernels. Consideremos variables i.i.d. X1, . . . , Xn.
En geometría aleatoria, Xi es un vecino más cercano por capas (LNN) de x si
el hiperrectángulo definido por x y Xi no contiene ningún otro punto de datos. El
número de LNN de x suele ser mayor que uno y depende de la configuración de los
puntos.

Sorprendentemente, los bosques sin remuestreo están íntimamente relacionados
con los LNN. Si cada hoja contiene exactamente un punto y no hay remuestreo,
entonces la predicción del bosque en x es un promedio ponderado de los Yi cuyos
Xi son LNN de x:

(3) m∞,n(x) =
n∑

i=1
Wni(x)Yi,

donde Wni(x) = 0 si Xi no es LNN de x y
∑n

i=1 Wni(x) = 1.
Esta conexión fue señalada por Lin y Jeon (2006) [61], quienes demostraron que

si X es uniforme en [0, 1]p y el crecimiento es independiente de Y1, . . . , Yn, entonces:

E
[
m∞,n(X) − m(X)

]2 = O

(
1

nmáx(log n)p−1

)
,

donde nmáx es el número máximo de puntos en celdas terminales.

55



Desafortunadamente, los pesos exactos (Wn1, . . . , Wnn) para el bosque de Brei-
man son desconocidos, y una teoría general de bosques en el marco LNN aún no
existe.

Sin embargo, la ecuación (3) permite analizar bosques mediante promediado
local. Para un bosque finito sin remuestreo:

mM,n(x; Θ1, . . . , ΘM ) =
n∑

i=1
Wni(x)Yi,

donde:

Wni(x) = 1
M

M∑

j=1

1{Xi∈An(x;Θj)}
Nn(x; Θj) .

Los pesos son no negativos y suman uno. Las observaciones en celdas densa-
mente pobladas contribuyen menos que aquellas en celdas menos pobladas, una
característica importante cuando los bosques se construyen independientemente de
los datos.

Al hacer M → ∞, la estimación puede escribirse (aproximadamente) como:

(4) m∞,n(x) ≈
∑n

i=1 YiKn(Xi, x)∑n
j=1 Kn(Xj , x) ,

donde:
Kn(x, z) = PΘ[z ∈ An(x; Θ)].

La función Kn(·, ·) se llama kernel del bosque y caracteriza la forma de las
celdas. Kn(x, z) es la probabilidad de que x y z caigan en la misma celda en un
árbol aleatorio, sirviendo como medida de proximidad. Cada bosque tiene su propio
kernel, pero el asociado a divisiones CART depende fuertemente de los datos y es
difícil de analizar.

Nótese que Kn no necesariamente pertenece a la familia de kernels Nadaraya-
Watson [66, 80], que tienen la forma homogénea:

Kh(x, z) = 1
h

K

(
x − z

h

)

Por ejemplo, Scornet (2015b) [72] demostró que para un bosque centrado en
[0, 1]p con parámetro k:

Kn,k(x, z) =
∑

k1,...,kp

k!
k1! · · · kp!

(
1
p

)k p∏

j=1
12kjxj=2kjzj

La conexión entre bosques y estimación por kernel fue mencionada por Breiman
(2000a) [29] y desarrollada por Geurts et al. (2006) [46]. Arlot y Genuer (2014)
[16] muestran que ciertos bosques simplificados pueden escribirse como estimadores
kernel y proporcionan sus tasas de convergencia.

Davies y Ghahramani (2014) [35] incorporan kernels basados en bosques en algo-
ritmos de procesos gaussianos, demostrando empíricamente que superan a kernels
lineales y de base radial. Los kernels de bosques también pueden usarse como en-
trada para métodos kernel estándar como Análisis de Componentes Principales con
Kernels y Máquinas de Vectores de Soporte.
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8. Fundamentos teóricos y variantes de los bosques aleatorios de
Breiman

Esta sección aborda el algoritmo original de Breiman (2001) [4]. Como la cons-
trucción depende de toda la muestra Dn, un análisis matemático completo es difícil.
Para avanzar, se han investigado los mecanismos individuales por separado.

8.1. El Mecanismo de Remuestreo. El algoritmo de Breiman selecciona n
veces de entre n puntos con reemplazo para cada árbol. Este procedimiento, que
se remonta a Efron (1982) [42], se denomina bootstrap. Generar muchas mues-
tras bootstrap y promediar los predictores se conoce como bagging (bootstrap-
aggregating), propuesto por Breiman (1996) [28] para mejorar aprendices débiles o
inestables.

Aunque el bootstrap es simple conceptualmente, su teoría es compleja. La dis-
tribución de la muestra bootstrap D∗

n difiere de la original Dn. Por ejemplo, si X
tiene densidad y muestreamos con reemplazo, con probabilidad positiva al menos
una observación se selecciona múltiples veces, creando puntos idénticos en D∗

n. Por
tanto, D∗

n no puede ser absolutamente continua.
El papel del bootstrap en bosques aleatorios permanece poco comprendido. La

mayoría de análisis lo reemplazan por submuestreo, donde cada árbol se construye
con an < n ejemplos elegidos sin reemplazo [78, 73]. Frecuentemente se asume que
an/n → 0, excluyendo el régimen bootstrap.

El análisis de bosques medianos [71] proporciona intuición sobre el submues-
treo. Un bosque mediano es similar al centrado, pero:

El corte se realiza en la mediana empírica (no el centro)
La construcción continúa hasta que cada celda contiene exactamente una
observación

Aunque cada árbol individual es generalmente inconsistente (el número de casos
en hojas no crece con n), Scornet (2015a) [71] demuestra que si an/n → 0, el bosque
mediano es consistente.

La condición an/n → 0 garantiza que:
Cada observación (Xi, Yi) se usa en el árbol j con probabilidad pequeña
cuando n crece
El punto x queda desconectado de (Xi, Yi) en una gran proporción de árboles

Si esto no ocurriera, el valor predicho en x estaría excesivamente influenciado
por pares individuales (Xi, Yi), haciendo el ensamble inconsistente. El error de
estimación es pequeño cuando la probabilidad máxima de conexión entre x y todas
las observaciones es pequeña. Así, an/n → 0 es una forma conveniente de controlar
estas probabilidades, asegurando que las particiones sean suficientemente diversas.

Biau y Devroye (2010) [25] aplicaron bagging al vecino más cercano (1-NN). El
estimador 1-NN estándar:

rn(x) = Y(1)(x),
donde Y(1)(x) corresponde al X(1)(x) más cercano a x, no es generalmente consis-
tente.

Mediante subbagging, se transforma en consistente con submuestras suficien-
temente pequeñas. El predictor elemental ran

es la regla 1-NN aplicada a una
submuestra aleatoria de tamaño an. El estimador submuestreado es:

r∗
n(x) = E∗[ran

(x)],
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donde E∗ es la esperanza respecto al remuestreo, dado Dn.
Biau y Devroye (2010) [25] demostraron que r∗

n es universalmente consistente en
media cuadrática (sin condiciones sobre la distribución de (X, Y )) siempre que an →
∞ y an/n → 0. La demostración se basa en que r∗

n es un estimador de promediado
local con pesos: Wni(x) = Pr[Xi es el vecino más cercano de x en una selección aleatoria de tamaño an].

Biau et al. (2010) [24] demuestran además que r∗
n alcanza la tasa óptima de

convergencia sobre clases Lipschitz, independientemente de si el remuestreo es con
o sin reemplazo.

8.2. Divisiones de Decisión. El proceso de división por coordenadas es difícil
de comprender porque utiliza tanto Xi como Yi para decidir las divisiones.

Basándose en Bühlmann y Yu (2002) [32], Banerjee y McKeague (2007) [18]
establecen una ley límite para la ubicación de divisiones en un modelo de regresión:

Y = m(X) + ε,

donde X es real y ε es ruido gaussiano independiente.
Supongamos que la distribución de (X, Y ) es conocida, y sea d∗ la división óptima

que maximiza el criterio teórico CART. Los estimadores de regresión en los hijos
son:

β∗
ℓ,n = E[Y | X ≤ d∗], β∗

r,n = E[Y | X > d∗].
Cuando la distribución es desconocida, se estiman empíricamente:

(β̂ℓ,n, β̂r,n, d̂n) ∈ arg mı́n
βℓ, βr, d

n∑

i=1

(
Yi − βℓ1{Xi≤d} − βr1{Xi>d}

)2
.

Bajo condiciones de regularidad (densidad f de X y m continuamente diferen-
ciables), Banerjee y McKeague (2007) [18] demuestran:

(5) n1/3




β̂ℓ,n − β∗
ℓ

β̂r,n − β∗
r

d̂n − d∗


 D−→




c1
c2
1


 arg máx

t

(
aW (t) − bt2) ,

donde W es un movimiento browniano estándar bilateral y a, b son constantes
positivas. Esta distribución límite permite construir intervalos de confianza para
las divisiones CART.

Ishwaran (2013) [51] analiza la Preferencia por Cortes Extremos (End-Cut
Preference, ECP) del criterio CART: las divisiones sobre variables no informativas
tienden a ubicarse cerca de los bordes de la celda. Esta es una propiedad deseable
porque:

Con aleatorización, existe probabilidad positiva de que ninguna variable pre-
seleccionada sea informativa
Si el corte se realiza en el centro, el tamaño muestral se reduce drásticamente
(factor de dos)
Un corte cerca del borde maximiza el tamaño muestral del nodo, permitiendo
recuperación en niveles posteriores

Ishwaran (2013) [51] argumenta que ECP puede ser beneficiosa incluso para
variables informativas si la región correspondiente contiene poca señal.

Scornet et al. (2015) [73] demuestran que los bosques aleatorios, asintóticamente,
realizan divisiones con alta probabilidad a lo largo de las variables informativas.
Denotando por jn,1(X), . . . , jn,k(X) las primeras k direcciones de corte para la
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celda de X, bajo condiciones de regularidad y una modificación donde todas las
direcciones se preseleccionan:
Con probabilidad 1−ξ, para n grande y todo 1 ≤ q ≤ k : jn,q(X) ∈ {1, . . . , |S|}.

Esto explica por qué los bosques se adaptan a esparsidad: seleccionan cortes
principalmente sobre variables informativas, proyectando efectivamente los datos
sobre el subespacio generado por esas variables.

Variantes del algoritmo:
Extra-Trees [46]: Selecciona aleatoriamente puntos de corte y elige el que
maximiza CART. Rendimiento similar con mayor eficiencia computacional.
PERT Árboles de ajuste perfecto con divisiones aleatorias. Aunque los ár-
boles individuales sobreajustan, el ensamble es consistente porque los clasi-
ficadores están casi no correlacionados.
Divisiones oblicuas [4, 77]: Divisiones a lo largo de combinaciones lineales
de características. Menze et al. (2011) [65] notan que las divisiones ortogona-
les producen superficies de decisión en forma de cajas, óptimas para algunos
datos pero subóptimas para datos colineales.

Selección de variables ponderada: La selección uniforme inevitablemente
incluye variables irrelevantes. Varias modificaciones proponen ponderación basada
en datos:

Kyrillidis y Zouzias (2014) [57]: Selección no uniforme de características en
árboles de clasificación.
Enriched Random Forests [15]: Muestreo ponderado favoreciendo carac-
terísticas informativas.
Reinforcement Learning Trees [85]: En cada nodo, construyen un bosque
para determinar la variable con mayor mejora futura, no efecto marginal
inmediato.

Corrección de sesgos: Las divisiones CART están sesgadas hacia covariables
con muchas divisiones posibles [27, 74] o valores faltantes [52]. Hothorn et al. (2006)
[48] proponen un procedimiento de dos pasos: (1) seleccionar la variable, (2) selec-
cionar la posición del corte.

Regularización:
Regularized Random Forest (RRF) [36]: Penaliza la selección de una
nueva característica cuando su ganancia es similar a características usadas
previamente.
Guided RRF (GRRF) [37]: Usa puntuaciones de importancia de un bos-
que ordinario para guiar la selección en RRF.
Penalización convexa tipo Garrote [64]: Selecciona grupos funcionales de
nodos para estimaciones más parsimoniosas.

Konukoglu y Ganz (2014) [53] abordan el control de tasa de falsos positivos,
presentando una forma fundamentada de determinar umbrales para selección de
características relevantes sin carga computacional adicional.

8.3. Consistencia, Normalidad Asintótica y Otros Resultados. Se ha de-
mostrado matemáticamente muy poco sobre el procedimiento original de Breiman.
Un resultado fundamental [4] muestra que el error del bosque es pequeño cuando
el poder predictivo de cada árbol es bueno y la correlación entre errores de árboles
es baja:
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EX,Y [Y − m∞,n(X)]2 ≤ ρ̄ EΘ,X,Y [Y − mn(X; Θ)]2 ,

donde:

ρ̄ = EΘ,Θ′ [ρ(Θ, Θ′)g(Θ)g(Θ′)]
EΘ[g(Θ)]2

,

con Θ y Θ′ independientes e idénticamente distribuidos,

ρ(Θ, Θ′) = CorrX,Y (Y − mn(X; Θ), Y − mn(X; Θ′)) ,

y

g(Θ) =
√

EX,Y [Y − mn(X; Θ)]2.

Friedman et al. (2009) [43] descomponen la varianza del bosque como producto
entre correlación de árboles y varianza de un árbol:

Var[m∞,n(x)] = ρ(x) σ(x),

donde ρ(x) = Corr[mn(x; Θ), mn(x; Θ′)] y σ(x) = Var[mn(x; Θ)].
Scornet (2015a) [71] establece una conexión entre bosques finitos e infinitos:

0 ≤ E[mM,n(X; Θ1, . . . , ΘM ) − m(X)]2 − E[m∞,n(X) − m(X)]2 ≤ 8
M

(
∥m∥2

∞ + σ2(1 + 4 log n)
)

.

Esta desigualdad proporciona una solución para elegir M : permite que el error
del bosque finito se aproxime arbitrariamente al del infinito.

Normalidad asintótica: Reemplazando bootstrap por submuestreo y simplifi-
cando las divisiones, se han demostrado resultados de normalidad.

Wager (2014) [78] demuestra normalidad asintótica bajo las suposiciones:
1. Los cortes se distribuyen sobre todas las p direcciones y no separan una

fracción pequeña de datos.
2. Se usan dos conjuntos de datos distintos: uno para construir el árbol y otro

para estimar valores en hojas.
Además, el jackknife infinitesimal estima consistentemente la varianza del bosque

[79].
Mentch y Hooker (2015) demuestran un resultado similar para bosques finitos,

basándose en que la predicción no varía significativamente al modificar ligeramente
una etiqueta. Si an = o(

√
n) y ĺımn→∞ n/Mn = 0, entonces para x fijo:

√
n (mM,n(x; Θ1, . . . , ΘM ) − E[m∞,n(x)])√

a2
n ζ1,an

D−→ N (0, 1)

donde N (0, 1) es la distribución normal estándar y:

ζ1,an
= Cov

(
mn(X1, X2, . . . , Xan

; Θ), mn(X1, X ′
2, . . . , X ′

an
; Θ′)

)
.

Tanto Mentch y Hooker (2015) [?] como Wager et al. (2014) [79] proporcionan
estimadores para la varianza ζ1,an

.
Scornet et al. (2015) [73] demostraron consistencia para modelos aditivos en la

versión podada del bosque de Breiman. Desafortunadamente, la consistencia sin
poda depende de una conjetura sobre CART que es difícil de verificar.
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Resultado negativo [23]: Considere un ejemplo donde k es fijo, mtry = 1,
y cada árbol minimiza la verdadera probabilidad de error. Sea X uniforme en
[0, 1]2 ∪ [1, 2]2 ∪ [2, 3]2 con Y función de X (L∗ = 0):

[0, 1] × [0, 1]: franjas verticales alternando m(x) ∈ {0, 1}
[2, 3] × [2, 3]: franjas horizontales alternando
[1, 2] × [1, 2]: tablero de ajedrez 2 × 2

Ningún árbol cortará correctamente el rectángulo central, independientemente
de las direcciones y profundidad. La probabilidad de error es al menos 1/6. Esto
ilustra que la consistencia de bosques construidos codiciosamente es delicada. Sin
embargo, con el algoritmo original de Breiman (exactamente un punto por celda),
se obtiene una regla consistente.

Nótese que m no es Lipschitz, una suposición de suavidad en la que se basan
muchos resultados.

9. Importancia de Variables

9.1. Medidas de Importancia. Los bosques aleatorios ofrecen dos medidas
para clasificar la importancia de variables:

1. Mean Decrease Impurity (MDI): Basada en la disminución total de im-
pureza al dividir por cada variable, promediada sobre todos los árboles. Para la
variable X(j):

M̂DI(X(j)) = 1
M

M∑

ℓ=1

∑

t∈Tℓ,j=j∗
n,t

pn,t Lreg,n

(
j∗

n,t, z∗
n,t

)
,

donde:
pn,t es la fracción de observaciones en el nodo t
{Tℓ} es la colección de árboles
(j∗

n,t, z∗
n,t) es la división óptima en t

MDI calcula la disminución ponderada de impureza para divisiones según X(j)

y promedia sobre árboles. Para clasificación, se reemplaza Lreg,n por Lclass,n.
2. Mean Decrease Accuracy (MDA): Basada en permutación de valores y

estimación out-of-bag. Para X(j), se permutan aleatoriamente sus valores en obser-
vaciones OOB y se mide el incremento en error de predicción.

Sea Dℓ;n el conjunto OOB del árbol ℓ y Dj
ℓ;n el mismo conjunto con valores de

X(j) permutados. Entonces:

(6) MDA(X(j)) = 1
M

M∑

ℓ=1

(
Rn

(
mn(·; Θℓ), Dj

ℓ;n
)

− Rn

(
mn(·; Θℓ), Dℓ;n

)
)

,

donde para D = Dℓ;n o D = Dj
ℓ;n:

(7) Rn

(
mn(·; Θℓ), D

)
= 1

|D|
∑

i:(Xi,Yi)∈D

(
Yi − mn(Xi; Θℓ)

)2
.

La versión poblacional de MDA es:

MDA∗(X(j)) = E
[
(Y − mn(X ′

j ; Θ))2
]

− E
[
(Y − mn(X; Θ))2

]
,

donde X ′
j = (X(1), . . . , X ′(j), . . . , X(p)) con X ′(j) copia independiente de X(j).
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Para clasificación, MDA satisface (6) y (7) con Yi ∈ {0, 1}, representando Rn la
proporción de puntos correctamente clasificados.

10. Algunas Extensiones

10.1. Bosques Ponderados. En el bosque de Breiman, la predicción final es
el promedio simple de árboles. Una mejora natural es incorporar pesos a nivel
de árbol para enfatizar los más precisos [81]. Bernard et al. (2012) [21] proponen
guiar la construcción mediante remuestreo y aleatorización para que cada árbol
complemente los existentes. El Dynamic Random Forest (DRF) resultante
muestra mejora significativa en 20 conjuntos de datos reales.

10.2. Bosques en Línea. El bosque original es offline: recibe todos los datos
inicialmente. Los algoritmos online no requieren el conjunto completo de una vez,
apropiados para escenarios de streaming donde los datos se generan continuamente.

Extensiones online incluyen Saffari et al. (2009) [69], Denil et al. (2013) [38], y
Lakshminarayanan et al. (2014) [58]. Los Mondrian forests [58] se construyen
online con desempeño competitivo y mayor velocidad.

Una dificultad importante es decidir cuándo hay suficientes datos para dividir
una celda. Yi et al. (2012) [84] proponen Information Forests, que difieren la
clasificación hasta que una medida de confianza sea suficientemente alta, dividiendo
datos para maximizar esta medida. Biau y Devroye (2013) [26] proporcionan teoría
relacionada con estos árboles codiciosos.

10.3. Bosques de Supervivencia. El análisis de supervivencia estudia el tiem-
po hasta que ocurren eventos, frecuentemente con datos censurados a la derecha.
Enfoques paramétricos como hazards proporcionales fallan en modelar efectos no
lineales.

Ishwaran et al. (2008) [49] extendieron bosques al contexto de supervivencia
con Random Survival Forests (RSF), probando consistencia para variables
categóricas. Yang et al. (2010) [83] demostraron que incorporar funciones kernel en
RSF (algoritmo KIRSF) mejora resultados en muchas situaciones. Ishwaran et al.
(2011) [50] revisan el uso de profundidad mínima para medir calidad predictiva de
variables.

10.4. Bosques de Ranking. Clémençon et al. (2013) [34] extendieron bosques
para problemas de ranking con Ranking Forests, basados en ranking trees [33].
El enfoque se basa en puntuación no paramétrica y optimización de la curva ROC
mediante el criterio AUC.

10.5. Bosques de Clustering. Yan et al. (2013) [82] presentan Cluster Fo-
rests (CF) para clasificación no supervisada. CF explora aleatoriamente un data
cloud de alta dimensión para obtener buenos agrupamientos locales, luego los agrega
mediante spectral clustering. La búsqueda está guiada por una medida de calidad
de clúster, y CF mejora progresivamente cada agrupamiento de manera similar al
crecimiento de árboles en bosques.

10.6. Bosques de Cuantiles. Meinshausen (2006) [63] muestra que los bosques
proporcionan información sobre la distribución condicional completa de la respues-
ta, permitiendo estimación de cuantiles.
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11. Ejemplo simulado

11.1. Descripción de los datos. Para ilustrar el funcionamiento de un modelo
de regresión basado en Random Forest, se generó un conjunto de datos simulado
con n = 1000 observaciones y cinco variables explicativas:

x1 ∼ U(0, 10), x2 ∼ U(−3, 3), x3 ∼ N (5, 22), x4 ∼ N (0, 12), x5 ∼ U(−5, 5).
La variable respuesta y se generó a partir de la siguiente relación no lineal con

componente aleatoria:

y = 5 + 2 sin(x1) − 0 · 5x2
2 + 0 · 8x3 − 0 · 3x4 + ε,

donde el término de error se distribuye como

ε ∼ N (0, 1).

Además en el experimento se tomaron N = 1000 arboles y mtry = 2 para
entrenamiento del modelo.

El objetivo del ejercicio es ajustar un modelo de Random Forest para estimar y
a partir de las covariables (x1, x2, x3, x4, x5) y evaluar su capacidad predictiva en
un conjunto de prueba.

11.2. Resultados. La tabla 2 presenta los resultados obtenidos tras entrenar el
modelo Random Forest en el conjunto de prueba, mostrando la comparación entre
los valores observados y las predicciones generadas. Esta tabla permite evaluar de
manera clara la precisión del modelo en las observaciones no utilizadas durante el
entrenamiento.

Cuadro 2. Comparación entre valores reales y predichos del mo-
delo Random Forest para algunos puntos de prueba

Observación Valor Real Predicción RF
1 8.641 7.106
5 3.163 5.186
6 11.592 11.880
21 8.246 9.454
23 9.914 9.894
24 10.523 9.527
25 4.394 6.455
29 7.679 9.210
33 9.387 7.906
35 12.720 11.384
37 8.373 8.818
42 8.388 7.859
44 7.252 6.975
54 8.303 7.882
59 8.606 9.723
62 7.717 7.787
63 9.398 8.057
65 7.518 6.169
66 5.456 5.304
69 8.367 6.543
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En la tabla 3 el modelo Random Forest presenta un error cuadrático medio
(MSE) de 1 · 622 y un error cuadrático medio de la raíz (RMSE) de 1 · 274 en
el conjunto de prueba. Dado que la variable respuesta y toma valores entre −1 · 19
y 15 · 39, el error promedio equivale aproximadamente al 7 · 7 % del rango total de
y. Este resultado sugiere que el modelo logra un ajuste adecuado y una capacidad
predictiva razonablemente buena, manteniendo errores moderados en relación con
la variabilidad de los datos observados.

Cuadro 3. Desempeño del modelo Random Forest en el conjunto
de prueba

Métrica Símbolo Valor
Error Cuadrático Medio MSE 1.622
Raíz del Error Cuadrático Medio RMSE 1.274

El modelo Random Forest obtuvo un Error Out-of-Bag (OOB) de
OOB = 1 · 716

lo que representa una estimación interna del error de predicción promedio. Este
valor indica que, en promedio, el modelo comete un error cuadrático medio apro-
ximado de 1 · 716 al predecir observaciones no utilizadas durante el entrenamiento
de cada árbol.

La Figura 1 presenta una comparación detallada del desempeño del modelo Ran-
dom Forest, mostrando tanto la relación entre los valores observados y las prediccio-
nes generadas como la distribución de los residuos asociados. Esta representación
permite evaluar visualmente la precisión y el ajuste del modelo.

Figura 1. Comparación de desempeño del modelo Random Fo-
rest: a la izquierda, (Real vs Predicho); a la derecha, (Residuos vs
Predicción).
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La Tabla 4 muestra la importancia relativa de cada variable en el modelo Random
Forest. Se observa que x3, x2 y x1 son las variables más influyentes tanto en términos
de %IncMSE como de IncNodePurity, lo que indica que ejercen un mayor impacto
sobre las predicciones del modelo. Por el contrario, x4 y, especialmente, x5 presentan
valores bajos, sugiriendo que aportan poca información para la predicción de la
variable respuesta y. Esta información resulta útil para identificar las covariables
que dominan la estructura del modelo.

Cuadro 4. Importancia de las variables en el modelo Random
Forest para regresión segun la métrica

Variable %IncMSE IncNodePurity
x1 97.709 1231.129
x2 104.299 1433.419
x3 164.855 2215.393
x4 7.381 403.692
x5 0.537 324.187

La Figura 2 ofrece una representación visual refinada de la relevancia de las
variables en el modelo, mediante un gráfico de barras comparativo entre métricas de
importancia. Esta visualización proporciona una comprensión más intuitiva de las
variables que ejercen una mayor influencia en el desempeño predictivo del modelo.

Figura 2.
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12. Conclusiones

En este trabajo se ha demostrado que los Random Forests constituyen una de las
metodologías más robustas y versátiles de aprendizaje estadístico moderno, gracias
a su capacidad para manejar datos de alta complejidad, identificar patrones rele-
vantes y realizar predicciones precisas y estables. Se destaca que la aleatorización en
la selección de datos y variables permite reducir la correlación entre árboles, dismi-
nuyendo la varianza del modelo final y haciéndolo especialmente útil en escenarios
con relaciones complejas y presencia de ruido.

Desde una perspectiva teórica, la solidez del método fue establecida por Leo Brei-
man, siendo posteriormente reforzada por diversos autores quienes han garantizado
la consistencia y adaptabilidad de los bosques ante distintos tipos de datos. En el
ámbito aplicado, los Random Forests resultan especialmente apropiados para abor-
dar problemas sociales, económicos y ambientales de Honduras, como la medición
de pobreza, la planificación territorial y el análisis educativo.

Metodológicamente, se ha subrayado la importancia del algoritmo y sus criterios
de construcción, así como los métodos de evaluación de la importancia de las va-
riables, incluyendo las medidas Mean Decrease Impurity (MDI) y Mean Decrease
Accuracy (MDA). Asimismo, la flexibilidad para realizar tareas de regresión y cla-
sificación, junto con la posibilidad de ajustar parámetros utilizando la estimación
out-of-bag, representa una fortaleza adicional.

En resumen, la contribución principal de este trabajo es resaltar la integración
de robustez teórica, eficiencia práctica y versatilidad aplicada por parte de los Ran-
dom Forests, consolidándolos como una herramienta primordial para el análisis, la
predicción y la toma de decisiones informadas en contextos multidisciplinarios. Ade-
más, su implementación y estudio favorecerian el fortalecimiento de competencias
nacionales en ciencia de datos e inteligencia artificial, aportando significativamente
al desarrollo científico de la región.
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EVALUACIÓN DEL RIESGO CLIMÁTICO AGRICOLA EN
HONDURAS MEDIANTE UN MODELO ACTUARIAL

ECONOMÉTRICO BASADO EN FUNCIONES DE VALORES
EXTREMOS

AXEL JOSAPHET CRUZ LOPEZ

Resumen. La producción agrícola en Honduras enfrenta una alta vulnera-
bilidad a eventos climáticos extremos, exacerbados por el cambio climático.
Esta investigación desarrolla y evalúa un modelo actuarial econométrico hí-
brido para la cuantificación del riesgo climático agrícola en el país. El modelo
propuesto fusiona tres enfoques: el análisis econométrico de series temporales
(ARIMA-X y VAR) para capturar la dinámica y co-dependencia entre variables
macro-climáticas (precipitación, temperatura) y los rendimientos de produc-
ción;la Teoría de Valores Extremos (EVT), utilizando distribuciones GEV y
GPD, para modelar específicamente la frecuencia y severidad de los eventos
catastróficos (sequías, inundaciones) que residen en las colas de la distribución;
y la ciencia actuarial para el cálculo de primas de riesgo. Mediante simulacio-
nes de Monte Carlo, se integra la dinámica base con los shocks extremos para
generar una distribución agregada de pérdidas agrícolas. Esta distribución per-
mite el cálculo de la Pérdida Esperada (EL) y el Tail Value at Risk (TVaR),
fundamentando una metodología robusta y cuantitativa para la tarificación de
seguros agrícolas adaptada a las condiciones de riesgo extremo en Honduras.

Palaras claves : Riesgo Climático, Teoría de Valores Extremos, Modelos Ac-
tuariales, Series Temporales, Honduras.

Abstract. Agricultural production in Honduras faces high vulnerability to ex-
treme weather events, exacerbated by climate change. This research develops
and evaluates a hybrid econometric-actuarial model for quantifying agricultu-
ral climate risk in the country. The proposed model combines three approaches:
econometric time series analysis (ARIMA-X and VAR) to capture the dyna-
mics and co-dependence between macro-climatic variables (precipitation, tem-
perature) and production yields; Extreme Value Theory (EVT), using GEV
and GPD distributions, to specifically model the frequency and severity of ca-
tastrophic events (droughts, floods) that lie in the tails of the distribution;and
actuarial science for the calculation of risk premiums. Through Monte Carlo
simulations, the base dynamics are integrated with extreme shocks to generate
an aggregated distribution of agricultural losses. This distribution allows for
the calculation of Expected Loss (EL) and Tail Value at Risk (TVaR), provi-
ding a robust and quantitative methodology for pricing agricultural insurance
adapted to the conditions of extreme risk in Honduras.

Key words : Climate Risk, Extreme Value Theory, Actuarial Models, Time
Series, Honduras
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1. Introducción

La economía de Honduras y la seguridad alimentaria de su población dependen
intrínsecamente del desempeño del sector agrícola. Este sector, sin embargo, es uno
de los más vulnerables a la variabilidad climática y, de forma creciente, a la inten-
sificación de eventos extremos como sequías prolongadas, huracanes e inundaciones
torrenciales, fenómenos exacerbados por el cambio climático. La evaluación precisa
de este riesgo es fundamental, pero presenta un desafío metodológico significativo.
Los modelos econométricos tradicionales, como los de series temporales ARIMA o
VAR, son eficientes para capturar la dinámica promedio y las interacciones entre va-
riables como la precipitación, la temperatura y la producción (Zulfiqar et al., 2024).
No obstante, estos modelos fallan sistemáticamente al subestimar la probabilidad
y el impacto de los eventos catastróficos, ya que sus supuestos a menudo de nor-
malidad no pueden modelar adecuadamente las colas pesadas de las distribuciones
de pérdidas.
Por otro lado, la Teoría de Valores Extremos (EVT) ofrece un marco estadístico
robusto, fundamentado matemáticamente, diseñado específicamente para modelar
el comportamiento de estos eventos raros y severos (Coles, 2001). Modelos como
la Distribución Generalizada de Valores Extremos (GEV) o la Distribución Gene-
ralizada de Pareto (GPD) permiten una caracterización precisa de la cola de la
distribución, es decir, del riesgo de pérdidas extremas en los cultivos (Van Tassell,
2024). Sin embargo, la EVT por sí sola no captura la dinámica temporal subyacente
ni las co-dependencias econométricas del sistema climático-agrícola. La literatura
reciente busca cerrar esta brecha, reconociendo que ni los modelos econométricos
por sí solos, ni los modelos de EVT de forma aislada, son suficientes para una
evaluación integral del riesgo.
Esta investigación propone y desarrolla un modelo actuarial econométrico híbrido
para la evaluación del riesgo climático agrícola en Honduras. El modelo fusiona
estas disciplinas para superar sus limitaciones individuales.

El objetivo general de este trabajo es cuantificar el riesgo de pérdida agrícola debido
a factores climáticos extremos en Honduras, desarrollando una metodología para el
cálculo de primas de seguro actuarialmente justas. Para alcanzar esto, se plantean
los siguientes objetivos específicos:

Modelar la dinámica y co-dependencia de línea base entre las series tempo-
rales de producción agrícola, precipitación y temperatura mediante modelos
econométricos ARIMA-X y/o VAR.
Ajustar modelos de Teoría de Valores Extremos GEV y GPD a los residuos
extremos de los modelos climáticos o directamente a los eventos extremos
ejemplo. sequías para caracterizar la frecuencia y severidad del riesgo catas-
trófico.
Integrar ambos componentes (econométrico y EVT) a través de simulaciones
de Monte Carlo para generar una distribución de pérdida agregada anual
para el sector agrícola.
Calcular métricas de riesgo actuarial, como la Pérdida Esperada (EL) y el
Tail Value at Risk (TVaR), para establecer una base técnica para la prima
pura de riesgo y los requerimientos de capital.
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La importancia de este articulo radica en su aplicación práctica. Al fusionar estas
técnicas, el modelo no solo describe el riesgo, sino que lo cuantifica en términos mo-
netarios y probabilísticos. Esto proporciona una herramienta cuantitativa esencial
para el diseño de seguros agrícolas paramétricos o de índice, la estructuración de
fondos de contingencia y la toma de decisiones de política pública para la adapta-
ción al cambio climático. Siguiendo enfoques similares aplicados en otros contextos
(Ly et al., 2024), este trabajo ofrece una metodología robusta para fortalecer la re-
siliencia financiera de los agricultores hondureños ante un futuro climático incierto
y extremo.

2. Jutificación

La presente tesis, centrada en la Evaluación del Riesgo Climático Agrícola en Hon-
duras mediante un Modelo Actuarial Econométrico, se justifica por la urgente nece-
sidad de dotar al país de herramientas cuantitativas y técnicamente avanzadas para
gestionar las crecientes amenazas que el cambio climático impone a su estabilidad
económica, sostenibilidad productiva y seguridad alimentaria.

1. Relevancia y Justificación Nacional (Resolución de Problemas de País):
La justificación de este trabajo radica en la respuesta directa y cuantificable
a problemas nacionales críticos, utilizando datos oficiales y especializados

Riesgo Catastrófico y Sostenibilidad Financiera: La agricultura, pilar
económico hondureño, está expuesta a la volatilidad climática. El uso de
la Teoría de Valores Extremos (EVT) (Coles, 2001) sobre datos de CO-
PECO e IHCIT permite modelar la probabilidad de eventos catastróficos
(sequías e inundaciones) que impactan la producción. Los modelos tradi-
cionales subestiman este riesgo, un fallo que ha costado al país pérdidas
significativas.
Fundamento para el Seguro Agrícola Nacional: La adopción de seguros
agrícolas es mínima debido a la falta de metodologías transparentes pa-
ra la tarificación. Esta investigación utiliza el PIB Agrícola y datos de
precios del BCH y SEFIN para monetizar el impacto de las pérdidas. Al
fusionar la EVT con el enfoque actuarial (Klugman et al., 2019; Ly et al.,
2024), el estudio establece el cálculo de primas puras basadas en la Pér-
dida Esperada y el TVaR, proporcionando la base técnica indispensable
para que SENASA y otras instituciones financieras puedan desarrollar e
implementar productos de transferencia de riesgo sostenibles.
Integración de Datos y Política Pública: El trabajo exige la integración
rigurosa de estadísticas agroclimáticas SENASA, IHCIT, meteorológi-
cas (COPECO) y económicas BCH, SEFIN en modelos ARIMA-X/VAR
(Enders, 2014). Esta integración demuestra la viabilidad de utilizar la
información nacional dispersa para la toma de decisiones basada en evi-
dencia, transitando de una gestión de crisis reactiva a una gestión de
riesgo predictiva y cuantificada.

2. Alineación con las Líneas de Investigación Prioritarias de la UNAH
Este trabajo se alinea de manera fundamental y directa con las prioridades de
investigación de la Universidad Nacional Autónoma de Honduras (UNAH):
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Línea de Investigación Priori-
taria UNAH

Justificación de la Alineación

Cambio Climático, Ambiente
y Gestión de Riesgos

Se centra en la evaluación y gestión cuantitativa del
riesgo climático, utilizando datos meteorológicos IHCIT,
COPECO para calibrar modelos de Teoría de Valores
Extremos (EVT) que miden la severidad del impacto
ambiental sobre el sector productivo nacional.

Desarrollo Económico, Pobre-
za, Desigualdad y Desarrollo
Humano

El estudio aborda la fragilidad económica del sector agrí-
cola. Al proveer la metodología para el seguro, contri-
buye a la resiliencia financiera y la estabilidad de ingre-
sos de los agricultores, actuando como una herramienta
contra la pobreza rural y para la planificación económica
BCH, SEFIN.

Ciencia y Tecnología La tesis es una aplicación de modelación avanzada, fu-
sionando disciplinas matemáticas (EVT), estadísticas
(Simulación Monte Carlo) y econométricas (ARIMA-X,
VAR) para resolver un problema nacional, contribuyen-
do a la innovación metodológica y la generación de co-
nocimiento científico-cuantitativo.

3. Línea de Investigación de la Maestría
El trabajo sigue y fusiona de forma sinérgica las siguientes líneas de investi-
gación de la Maestría en Estadística:
a) Econometría y actuaría : Esta es la línea central. El estudio es la aplica-

ción de modelos estadísticos y matemáticos para la evaluación de riesgos
y la tarificación de seguros(actuaría) en un contexto económico PIB,
precios, producción.

b) Teoría de los valores extremos : El modelo depende fundamentalmente
de la EVT para calcular la probabilidad de eventos o valores más extre-
mos que los observados previamente sequías, inundaciones, lo cual es su
principal aporte metodológico.

c) Series de tiempo : El análisis de las series históricas de producción y va-
riables climáticas (Enders, 2014) es esencial para la etapa de diagnóstico
y modelado de la dinámica temporal base del fenómeno.
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3. Antecedentes

1. El Pilar de la Econometría de Series Temporales y el Clima
El análisis de series temporales se formalizó en la década de 1970 con la
metodología Box-Jenkins. Esta proporcionó un marco sistemático para la
identificación, estimación y verificación de modelos univariados ARIMA (Au-
torregresivo Integrado de Media Móvil), fundamentales para la modelización
de variables que exhiben dependencia temporal, estacionalidad o tendencia
(Enders, 2014).

Primeros Aportes (1980 - 1990): Inicialmente, los modelos de series tem-
porales se aplicaron al análisis macroeconómico. Sin embargo, su exten-
sión a variables climáticas y agrícolas fue evidente al buscar la relación
entre variables económicas y factores exógenos. La incorporación de la
variable climática como un factor exógeno dio origen al modelo ARIMA
con variables exógenas (ARIMA-X), permitiendo capturar cómo la pre-
cipitación o la temperatura afectan la producción (Zulfiqar et al., 2024).
Desarrollo Multivariado (1990 - 2000): La comprensión de que las varia-
bles económicas y climáticas se influyen mutuamente llevó al desarro-
llo de modelos multivariados, principalmente el Vector Autorregresivo
(VAR), popularizado por Christopher A. Sims. Estos modelos son esen-
ciales para analizar la causalidad y la dinámica de corto y largo plazo
entre variables interconectadas ejemplo, la precipitación en la producción
y el PIB agrícola.
Posteriormente, los trabajos de Robert F. Engle y Clive W. J. Granger
sobre la Cointegración permitieron modelar la relación de equilibrio a
largo plazo entre series, incluso si estas son no estacionarias. Este con-
cepto es vital en la agricultura, ya que la producción y los precios, aunque
volátiles, pueden mantener una relación estable a largo plazo.
Aportes Recientes: Los trabajos más recientes buscan refinar la relación
entre el clima y los resultados económicos. Estudios como el de Sarker
y Sarker (2024) usan modelos econométricos para vincular la volatilidad
del clima con las dinámicas de las exportaciones agrícolas, estableciendo
la metodología para monetizar el impacto de las variables climáticas.

2. El Pilar de la Teoría de Valores Extremos (EVT)
La Teoría de Valores Extremos (EVT) es la rama de la estadística que se
enfoca en el comportamiento probabilístico de los valores atípicos, es decir,
de los máximos o mínimos de una secuencia de datos. Sus fundamentos se
remontan a principios del siglo XX, pero su formalización clave ocurrió en
la segunda mitad.

Ronald Fisher y Leonard Tippett (1928): Publicaron el teorema que
establece que la distribución de los máximos normalizados de una gran
muestra debe converger a una de las tres formas asintóticas (Gumbel,
Fréchet, Weibull).
Boris V. Gnedenko (1943): Demostró formalmente el Teorema de Fisher-
Tippett-Gnedenko, el pilar de la distribución GEV (Generalized Extreme
Value), utilizada para modelar los máximos por bloques (Coles, 2001).
Laurens de Haan y A. L. M. Rootzén (Década de 1970): Sus trabajos
formalizaron el enfoque de Picos Sobre el Umbral (POT), demostrando

74



que la distribución de los excesos por encima de un umbral alto converge
a la Distribución Generalizada de Pareto (GPD). Este enfoque es prefe-
rido en la práctica actuarial y financiera por su uso eficiente de los datos
extremos.
Aportes Recientes a la Teoría: El desarrollo reciente de la EVT se centra
en hacer que los modelos sean no estacionarios (Coles, 2001). Dado que
el riesgo climático está cambiando, el modelado moderno requiere que
los parámetros de las distribuciones GEV/GPD como la localización o
la escala sean funciones del tiempo o de covariables como tendencias de
temperatura. Esto es crucial para proyectar el riesgo en un escenario de
cambio climático y no solo describirlo históricamente.

3. El Pilar Actuarial y la Fusión con el Riesgo Extremo La ciencia actuarial,
históricamente centrada en seguros de vida y pensiones, se expandió a la
modelación de pérdidas no vida Propiedad y Daños a partir de la década de
1980.

Desarrolladores Clave y Modelos de Pérdida: Los trabajos de Stuart A.
Klugman, Harry H. Panjer y Gordon E. Willmot formalizaron los mo-
delos de pérdida agregada, que combinan distribuciones de frecuencia
(cuántos eventos ocurren) y severidad (cuál es la magnitud de cada pér-
dida) (Klugman et al., 2019). Esta es la base para las Simulaciones de
Monte Carlo utilizadas para generar la distribución de pérdida total.
Fusión EVT-Actuarial (Siglo XXI): La crisis financiera de 2008 y la
creciente amenaza del riesgo catastrófico natural impulsaron la adopción
de la EVT en la tarificación de seguros y la gestión de capital (Solvencia
II). La EVT se convirtió en la herramienta estándar para modelar la cola
de la distribución de pérdidas (severidad) antes de ser agregada mediante
Monte Carlo. Esto permite calcular métricas actuariales robustas como
el Value at Risk (VaR) y el Tail Value at Risk (TVaR), esenciales para
la fijación de la prima pura y el recargo por riesgo (Dickson, 2016; Osepa
& Mailafia, 2024).
Integración Actuarial-Econométrica: El aporte más reciente y relevan-
te para esta tesis es la integración de los tres pilares. Ly, Riam, y Hi-
zam (2024) ejemplifican este enfoque al utilizar modelos de cointegración
(econometría) para vincular los rendimientos de cultivos con factores cli-
máticos extremos (EVT), aplicando el resultado para diseñar un sistema
de tarificación de primas.
Modelado del Rendimiento como Riesgo: El trabajo de Van Tassell (2024)
valida el uso de la EVT para modelar la cola izquierda de la distribución
de rendimientos agrícolas es decir, las grandes pérdidas o fallas de cose-
cha, proveyendo el insumo directo para el cálculo actuarial del riesgo de
seguro.

4. Integración Actuarial-Econométrica y Riesgo Agrícola

El aporte más reciente es la integración de los tres pilares en aplicaciones
sectoriales. El trabajo de Van Tassell (2024) valida la aplicación de la
EVT para modelar la cola izquierda de las distribuciones de rendimientos
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de cultivos las grandes pérdida, proporcionando el insumo directo para
el cálculo de pérdidas.
Finalmente, la investigación de Ly, Riam, y Hizam (2024) ejemplifica la
integración final: utilizan la cointegración econometría y la cuantificación
de extremos (EVT) para alimentar directamente un sistema actuarial de
tarificación de primas, que es el objetivo último de esta tesis.

Cuerpo del articulo

Marco teorico

Modelado de serie temporales en agricultura. El modelado de serie tempo-
rales agricolas consiste en analizar la evolución temporal de variable agroclimatica
como rendimiento,producción precipitación o temperatura con el fin de capturar
sus tendencia, estacionalidades y perturbaciones aleatorias.Este enfoque permite
identificar relaciones dinámicas entre los factores climáticos y los resultados pro-
ductivos, esenciales para pronósticos y evaluación de riesgo en agricultura.[3]
Propiedades fundamentales de las series temporales

Definición Estacionariedad: Una serie Yt es estacionaria si su media y varain-
za son constantes a lo largo del tiempo y la covarianza depende solo de la distancia
temporal (h), no del tiempo absoluto.
(3.1) E[Yt] = µ, V ar(Yt) = σ2, Cov(Yt, Yt−h) = γ(h)
La estacionariedad garantiza que los parámetros estimados sean estables y que el
proceso sea predecible.[8]

Definición Autocorrelación y dependencia temporal: Las observaciones
sucesivas de Yt puede estar correlacionadas, capturando persistencia climática o
agricola como por ejemplo el rendimiento que afecta las condiciones previas de
humedad o temperatura.[8]
La función de autocorrelación (FAC) se define como :

(3.2) ρ(h) = γ(h)
γ(0)

Definición Estacionalidad : En agricultura, es común observar patrones estacio-
nales asociados a ciclos de cosecha o precipitaciones. Se puede eliminar mediante
diferenciación estacional :
(3.3) Y

′
t = Yt − Yt−s

donde s representa la periodicidad como por ejemplo puede ser perido de 12 meses
o 4 trimestre.[3]

Modelo ARIMA(p,d,q)
El modelo ARIMA(AutoRegressive Integrated Moving Average) representa la re-
lación entre el valor actual de una serie y sus valores pasados,junto con errores
pasados.
(3.4) Yt = φ1Yt−1 + φYt−2 + ......+ φpYt−p + θ1εt−1 + .....+ θqεt−q + εt

donde :
p : Es el orden autorregresivo (AR).
d: Es el número de diferencias aplicadas para lograr estacionariedad.
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q : Es el orden del promedio móvil (MA).
εt: Es el error o ruido blanco con media vero y varainza constante.

La version integrada se aplica cuando la serie presenta tendencia, transformando
Yt en diferencia de orden d
(3.5) 5d Yt = (1−B)dYt
[8], [3]

Modelo ARIMA-X(ARIMAX)
En contextos agricolas, las fluctuaciones en el rendimiento no dependen únicamente
de la dinámica temporal interna, sino tambien de factores exógenos climáticos.
El modelo ARIMA-X o ARIMAX amplia la formulación clásica incluyendo varia-
bles externas Xt, tales como precipitación acumulada, temperatura media o indices
climáticos :

(3.6) Yt = α+
p∑

i=1
φiYt−i +

q∑

j=1
θjεt−j +

r∑

k=1
BkXt−k + εt

donde
Yt : Rendimiento o producción agricola.
Xt : Variale exógena climática.
Bk sensibilidad del rendimiento ante el factor climático.

Este modelo permite evaluar cómo los choques climáticos afectan la producción
y cuantifican su elasticidad frente a la precipitación o temperatura.[3],[8]

Análisis de cointegración agricola
Cuando las series no son estacionarias en nivel, pero una combinación lineal de ella
si lo es,se dice que están cointegradas.Esto implica una relación de equilibrio de
largo plazo entre la variables agroclimáticas.
El modelo de cointegración es :
(3.7) Yt = α+ βXt + εt

donde εt es estacionario, aunque Yt y Xt no lo sean individualmente.
Este analisis de cointegración se usa para modelar relaciones entre rendimiento
agricola y eventos climáticos extremos o indices globales como ENSO, temperatura
oceánica etc, evitando regresiones espurias.[1]

Teoria de valores Extremos (EVT) en riesgo climaticos. Lateoria de valo-
res extremos EVT, por sus siglas en ingles: Extreme Value Theory proporciona el
marco estadistico para modelar eventos raros o extremos, es decir, aquellos que se
sitúan en las colas de una distribución
En el contexto climático y agricola, la EVT permite estimar la probabilidad y
magnitud de fenómenos pocos frecuentes pero de gran impacto, como sequias pro-
longadas, lluvias torreciales o temperaturas extremas, que afectan el rendimiento y
la estabilidad económica del sector agricola.

Según Cole(2001)[7], la EVT se fundamente en el estudio del comportamien-
to asintótico de los maximos (o minimos) de una secuencia de variales aleatorias,
extendiendo los principios de la probabbilidad clásica hacia las colas de la distribu-
ción.De esta manera, en lugar de analizar el comportamiento promedio, la EVT se
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centra en los riesgos extremos, es decir, en los eventos que se sobrepasan un cierto
umbral critico.[7]

Modelo de máximos por bloques(Block Maxima Approach)
El enfoque de máximos por bloques consiste en dividir una serie temporal en blo-
ques de igual longitud por ejemplo años o estaciones y luego toma el valor máximo
(o minimo) de cada bloque.
Si los datos son independintes e idénticamente distribuidos, el teorema de Fisher
Tippett Gnedenko establece que

Teorema de Fisher Tippett Gnedenko Para un tamaño de bloques sufi-
cientemente grande, la distribución de los máximos se aproximan a una de las tres
formas conocidas como distribución de valores extremos generalizada (GEV)

(3.8) G(x) = exp{−[1 + ξ(x− µ
σ

)]
−1
ξ } donde 1 + ξ

x− µ
σ

> 0

donde
µ : Es el parametro de localización.
σ > 0 : Es el parámetro de escala.
ξ: Es el parámetro de forma que determina el tipo de cola.

Consideremos la interpretacion del parámetro de forma (ξ):
ξ = 0 : Es de tipo Gumbel, cola exponencial(eventos moderadamente extre-
mos).
ξ > 0 : Es de tipo Fréchet, cola pesada(eventos muy extremos , como lluvias
torrenciales).
ξ < 0 : Es de tipo Weibull, cola finita(limite superior natural, útil para
temperatura máxima.

[7]

Modelo de excedencias sobre Umbral(Peaks Over Threshold, POT)
El segundo enfoque, propuesto por Pickands(1975) y formalizado en cole(2001)[7],
consiste en modelar directamente las excedencias sore un umbral alto u.
Si Y = X−u representa el exceso sobre u, entonces para valores sufucientente gran-
des de u, la distribución condicional de Y sigue aproximadamente una distribución
Pareto generalizada (GPD) :

(3.9) H(y) = 1− (1 + ξ
y

β
)
−1
ξ , y > 0, 1 + ξ

y

β
> 0

donde
β > 0 : Parámetro de escala.
ξ : parámetros de forma, compartido con la GEV.

Este modelo es especialmente útil para estimar probabilidades de eventos extre-
mos raros, incluso cuando no existen observaciones directas de tales eventos en el
historial. [7], [2]

Tenemos algunas propiedades fundamentales de la EVT :
1. Invarianza a tranformaciones lineales : Si X sigue un GEV o GPD , cualquier

tranformación lineal a+bX con b > o también pertenece a la mima familia.
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2. Estabilidad de la forma : El parámetro ξ define la clase de cola(Gumbel, Fré-
cheto Weibull) y se mantiene constante bajo escalas temporales razonables.

3. Interpretación de riesgo : La EVT permite calcular métricas de riesgo como
el nivel de retorno y el periodo de retorno :

(3.10) xT = µ+ σ

ξ
[(−ln(1− 1/T ))−ξ − 1]

donde xT es el evento esperado una vez cada T periodos por ejemplo una
sequia centeraia.

[7]
La EVT ha sido ampliamente utilizada para estimar la probabilidad de lluvias ex-
tremas que superan la capacidad de drenaje agricola, tambien determian el riesgo
de perdida por seguias prolongadas y evalua el impacto potencial de eventos EN-
SO(El Niño/La Niña) sobre el rendimiento agricola.
Según Van Tassell(2024), al combinar la EVT con información agroclimática, se
obtiene una estimación más precisa del riesgo de pérdida extrema, lo cual es funda-
mental para diseñar seguros indexados climáticos y determinar primas actuariales
justas. [2]

Modelos actuariales y de riesgo. Los modelos actuariales de riesgo constituyen
la base matematica de la valoración de perdida, estimación de reserva y cálculo de
primas en seguros.
En el contexto agricola , estos modelos permiten cuantificar la frecuencia e inten-
sidad de eventos climáticos adversos(como sequias o lluvias excesivas) y estimar la
pérdida esperada total de los productores.

De acuerdo con Klugman, Panjer y Willmot(2019)[11], el riesgo se representa
como una suma aleatoria de pérdidas individuales, donde cada evento climático ge-
nera una pérdida Xi, y el número total de eventos N sigue una distribución discreta
como por ejemplo Poisson o una Binomial.Asi, el modelo de pérdida agregada se
define como :

(3.11) S =
N∑

i=1
Xi

donde
S : Es la pérdida total en un periodo, por ejemplo una temporada agricola.
N : Es el número de evento extremos.
Xi : Es la pérdida individual causada por el evento i.

[9]

Componentes del modelo de riesgo

1. Frecuencia de evento (N) :El numero de evento extremos se modela mediante
una distribución discreta de conteo. Las mas utilizadas son :

Distribución de Poisson

(3.12) P (N = n) = λne−λ

n! n = 0, 1, 2...
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donde λ = E[N ] es la frecuencia esperada de eventos como por ejemplos
lluvias intensas por años.
Distribución Binomial : Si el número de observaciones es finito

(3.13) P (N = n) =
(
m
n

)
pn(1− p)m−n

con m el número máximo de ensayos(años o parcelas) y p la probabilidad
de un evento extremo.

2. Severidad de pérdida (Xi) :Cada pérdida individual Xi se modela con una
distribución continua no negativa. Las mas comunes son

Distribución Lognormal : Es útil para pérdidas moderadas y variables
climáticas multiplicativas.
Distribución Gamma o Weibull :aplicables a daños acumulativos.
Distribución Pareto o Generalized Pareto (GPD) : ideal para pérdidas
extremas, en conexión con la EVT.

(3.14) f(x; ξ, β) = 1
β

(1 + ξ
x

β
)
−1
ξ−1 x > 0

donde β es el parametro de escala y ξ es el parámetro de forma(cola
pesada si ξ > 0)

[9], [7]

Momentos y métricas de riesgo
El riesgo total S combina la aleatoriedad de N(frecuencia) y Xi(severidad).Bajo
independencia entre ambos, los momentos del total de pérdida son :
(3.15) E[S] = E[N ]E[X]

(3.16) V ar(s) = E[N ]V ar(X) + V ar(N)(E[X])2

Estas expresiones permiten estimar el valor esperado de la perdida total y su va-
riabilidad, base para el cálculo de reservas y primas.[9]

Distribución de pérdida agregadas
Cuando no existe una forma analitica simple para S, se utiliza métodos de simula-
ción Monte Carlos o aproximaciones numéricas (Panjer recursion) para obtener la
distribución de perdida totales. [13]

Simulación Monte Carlos:
Genera N ∼ Poisson(λ).
Simular N pérdidas Xi según su distribución.
Calcular S =

∑
Xi.

Repetir hasta obtener la distribución empirica de S.
[9]

Probabilidad de ruina y control de solvencia
Según Dickson(2016)[10], el analisis actuarial no solo evalúa pérdidas esperadas,
sino tambien la probabilidad de ruina del asegurador, es decir, la probabilidad de
que las pérdidas acumuladas excedan el capital inicial u
(3.17) ψ(u) = P (ruina|capital inicial = u)
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En el modelo clásico de riesgo de Cramér-Lundberg[12], con primas c cobradas
a tasa constante, la reserva del asegurado al tiempo t se expresa como :

(3.18) U(t) = u+ ct− S(t)
donde u es el capital inicial, c el ingreso por primas y S(t) es la pérdida acumulada
hasta t.
La condición de equilibrio para evitar la ruina es
(3.19) c > E[S]/t

[10]

Integración metodológica.
1. Los residuos de ARIMA-X representan las desviaciones no explicadas por

los factores normales, es decir, los eventos anómalos o extremos.
2. Dichos residuos se analizan mediante EVT, obteniendo párametros de cola

(ξ, β) que describe la severidad de las pérdidas.
3. Los parámetros de frecuencias (λ) y severidad (GPD) se integran en el mo-

delo actuarial de riesgo agregado, permitiedo cuantificar la pérdida total
esperada y la prima justa que compensa al asegurador.

Metodológia

Datos y procesamiento. Esta subsección repasa la fuente de datos y las series
utilizadas ,PIB, precios de BCH,SEFIN; precipitación, temperatura y producción
de SENASA,IHCIT,COPECO, la necesidad de homogeneidad de series intertem-
porales como menciona Enders, 2014,[8]) pero aquí usamos las otras series, y el
procesamiento de la serie cronológica de eventos meteorológicos extremos para cap-
turar las variables climáticas de interés.
De Sarker et al. (2024)[4] el artículo discute cómo los eventos meteorológicos ex-
tremos influyen en la dinámica de las exportaciones agrícolas y en las expectativas
económicas intertemporales.

Definición de eventos meteorológicos extremos : las sequías y las inundacio-
nes son los eventos meteorológicos extremos, ya que son grandes desviaciones de la
norma e influyen en la producción agrícola de manera positiva o negativa, influyen-
do así en las exportaciones agrícolas. Estos eventos son choques que influyen en la
economía para estar desbalanceada.

Propiedades de los eventos meteorológicos extremos: los eventos meteoro-
lógicos extremos están altamente sesgados con colas pesadas que ilustran el gran
impacto son altamente arriesgados ejemplo cosechas pobres. Estos eventos meteo-
rológicos extremos son no estacionarios, ya que están influenciados por el cambio
climático, de ahí la necesidad de ajustar las series a la homogeneidad de series in-
tertemporales.

Honduras necesita examinar los datos de temperatura de precipitaciones de SENA-
SA,IHCIT,COPECO para homogeneizar tendencias y aislar mejor los extremos,
ya que las tendencias pueden ser no climáticas ,variaciones estacionales, errores de
medición, etc. Esto es útil para analizar los datos económicos, utilizando los datos
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del PIB de BCH,SEFIN.

el artículo describe el uso de análisis de regresión para determinar la relación entre
eventos climáticos extremos y exportaciones:

(3.20) ln(EXt) = α+ β1ln(EXt−1) + β2EXTt + εt

donde EXt es el volumen de exportaciones agricola en el periodo t, EXTt es un
indicador de evento extremo por ejemplo, desviación de precipitación, y εt es el
error.Esta ecuación ayuda a procesar series temporales para detectar impactos en
producción agrícola hondureña.

La Academia Americana de Actuarios (2024): El Índice de Riesgo Climático de
los Actuarios (ACRI)[6] evalúa riesgos climáticos globales específicos, incluyendo la
agricultura.

Definición ACRI : El ACRI es un índice compuesto que evalúa la magnitud del
riesgo climático por ejemplo, sequías, inundaciones en varios sectores, incluyendo
la agricultura, utilizando datos históricos y proyecciones.

Es aditivo y escalable, lo que permite homogeneizar series temporales de múlti-
ples fuentes por ejemplo, precipitación de COPECO con precios de SEFIN. Incluye
componentes sobre la frecuencia e intensidad de los extremos.
Para Honduras, ACRI puede ser utilizado para corroborar la homogeneidad de la
serie temporal, asegurando que los datos de producción agrícola reflejen el verda-
dero riesgo climático, es decir, cambios en la precipitación que impulsan la cosecha.

El ACRI se calcula como :

(3.21) ACRI = w1.FREQ+ w2.INT + w3.EXP

donde FREQ es la frecuencia de eventos extremos,INT su intensidad,EXP la expo-
sición económica por ejemplo, basada en PIB agrícola ,wi son pesos. Esto apoya el
procesamiento de datos hondureños para identificar umbrales de riesgo.

Modelo econométrico base. Aquí se describe la selección y ajuste de modelos
como ARIMA-X o VAR para series de producción y clima, capturando dinámicas
base y tendencias relacionado con Enders, 2014,[8] .
El artriculo de Osepa et al.(2024)[5] combina EVT con machine learning para pro-
nosticar riesgos de inversión, aplicable a modelos econométricos base.

Definición : Un modelo de pronóstico de riesgo de inversión integra EVT para
extremos con técnicas econométricas por ejemplo, VAR para capturar tendencias
no lineales en series temporales.

Una propiedad de esto es que es hibrido robusto a no estacionariedad, y usa machi-
ne learning para ajustar parámetros dinámicos, mejorando la predicción de shocks
climáticos en producción agrícola.
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En Honduras, se puede aplicar para ajustar un modelo VAR a series de producción
(SENASA) y clima (COPECO), incorporando tendencias de cambio climático. Esto
complementa ARIMA-X al incluir variables exógenas extremas.

El modelo combina EVT con regresión como se muestra:

(3.22) Yt = α+
p∑

i=1
βiYt−i + γXt + δEV Tt + εt

donde Yt es la producción agricola, Xt son variables climáticas, EV Tt es el com-
pomente extremo por ejemplo de GPD , y εt es el error. esto captura dinámicas
base con tendencias. Sarker et al(2024)[4] Vincula eventos extremos con dinámicas
económicas, útil para modelos base.

Definición : Las expectativas climáticas se refieren a proyecciones de eventos ex-
tremos que afectan modelos econométricos, como VAR para producción agrícola.

Una propiedad muy importante es que son prospectivas, incorporando incertidum-
bre, y permiten ajustar modelos para tendencias estacionales o de largo plazo.

Para series hondureñas, esto ayuda a seleccionar ARIMA-X al incluir precipitación
como variable exógena, capturando tendencias de sequía.

Similar a la anterior, pero enfocada en exportaciones:

(3.23) ∆EXt = α+ β1∆EXt−1 + β2CLIMt + εt

donde CLMt, representa expectativas climaticas por ejemplo temperaturas extre-
mas, aplicable a producción.

Modelado de evento extremos(EVT). En esta sección se define umbrales,
para sequias y exceso, ajusta GPD(POT) y modelos no estacionario[7] Se usa EVT
para modelar extremos en riesgos de inversion[5]

Definición : EVT modelala distribución de valores extremos por ejemplo, minimo
de precipitación para seguias usando GPD para excesos sobre umbrales.

Esto nos lleva a las siguientes propiedades
Propiedades

Es adecuado para colas pesadas, con parametros como forma ξ y escala σ.
Permite modelos no estacionarios al incluir covariables por ejemplo como
tiempo para cambio climatico.

Para Honduras, define umbrales de sequias por ejemplo precipitación < 50 mm/mes
y ajusta GPD a exceso, incorporando tendencias climaticas.

para GPD(POT)

(3.24) P (X > x|X > u) = (1 + ξ
x− u
σ

)
−1
ξ
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donde u es el umbral, ξ la forma y σ la escala.

para el caso no estacionario

(3.25) σ(t) = σo + β

donde t es el tiempo , capturando el cambio climático.

De American Academy of Actuaries(2024)[6] el ACRI incluye componentes EVT
para extremos.

Definición : EVT en ACRI modela el riesgo extremos como distribuciones de
pérdidas agricolas.
Es probabilistico, con foco en retornos de nivel por ejemplo Var climatico,esto se
aplica a umbrales hondureños ajustado GPD para precipitación o temperaturas.

Integración actuarial y simulación. Aqui se integra EVT con el modelo econo-
metrico para shocks en producción, simulación Monte Carlos y métricas de riesgo
[9] Tratar riesgos de seguros y ruina , aplicable a integración actuarial[10] no pro-
porciona la siguiente definición.

Definición : La probabilidad de ruina mide el riesgo de que pérdida excedan re-
servas, usando distribuciones agregadas.

Es actuarial, con foco en VAR y TVAR para primas.En el modelos hondureños,
traduce shocks EVT en perdidas de producción simulando escenarios.

La probabilidad de ruina en modelos Cramer-Lundberg

(3.26) ψ(u) = P (τ <∞|R(0) = u)

donde τ es el tiempo de ruina, R(t) el proceso de reserva.

Para VAR

(3.27) V aRq = infx : P (L > x) ≤ 1− q
donde L es la pérdida agregada.

De Jiménez Hernándezet al [12] analiza probabilidad de ruina en Cramer Lundberg
y considera la siguiente definición

Definición: El modelo de Creamer Lundberg modela flujos de primas y reclamos
para riesgos actuariales.

Tambien asume procesos de Poisson para reclamos, con distribución exponencial.
Aplica a simulaciones peŕdidas agricolas Hondureñas por extremos climaticos.

El proceso de reserva es el siguiente

(3.28) R(t) = u+ ct− S(t)
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donde c es la tasa de primas, S(t) los reclamos acumulados, y la probabilidad de
la ruina es

(3.29) ψ(u) = λ

µc
e(µc−λ) u

σ2

luego de Osepa et al [5] combina EVT con simulación para métricas de ries-
go.Aplicando simulacion Monte Carlo genera distribuciones de pérdidas agrega-
das.Usa miles de iteraciones para estimar VaR/TVaR.Simula escenarios futuros
con shocks EVT en producción Hondureña. Para la perdida agregada se definine
de la siguiente manera

(3.30) L =
N∑

i=1
Xi

donde Xi son pérdidas individuales, simuladas con EVT.

De Sarker et al [4] vincula extremos con impactos económicas para simulación.
Eventos extremos generan shocks en variables económicas.

Con esta definición nos permite calcular EL , VAR. Integra con simulación para
distribuciones de peŕdidas . La perdida esperada se define como

(3.31) EL = E[L]

con VAR con en Dickson[10]

Resultados

En esta sección, se presentan los resultados empíricos obtenidos al aplicar el modelo
actuarial econométrico basado en EVT a datos agrícolas hondureños. Los análisis
se basan en series temporales de producción agrícola ejemplo, maíz y café, ob-
tenidas de SENASA/IHCIT, variables climáticas precipitación y temperatura de
COPECO, y el Índice de Riesgo Climático de los Actuarios (ACRI) de la Ameri-
can Academy of Actuaries (2024)[6]. Los datos se procesaron para homogeneizar
series intertemporales, ajustando tendencias no climáticas y estacionalidades, co-
mo se describe en la metodología[8]. Los modelos se estimaron utilizando software
estadístico ejemplo, R o Python, y los parámetros se validaron mediante pruebas
de estacionariedad, cointegración y bondad de ajuste ejemplo, AIC, BIC y pruebas
de Kolmogorov-Smirnov para EVT.

Estimación de parámetro econométrico y extremos. Aquí esta una subsec-
ción profundiza en las estimaciones de los parámetros cruciales, de modelos eco-
nométricos fundacionales, tales como ARIMA-X y cointegración, junto a los com-
ponentes EVT, todos ellos aplicados a las series de Honduras. Dichos hallazgos,
combinan dinámicas temporales con eventos extremos, facultando la cuantificación
precisa de la relación que existe, entre los factores climáticos y el rendimiento de la
agricultura, como predijo la integración metodológica. Para el modelo econométrico
central, se acomodó un ARIMA-X(1,1,1) empleando variables exógenas climáticas,
un poco parecido a los planteamientos de Zulfiqar et al. (2024)[3] y Enders (2014)[8].
Se modeló la serie de producción agrícola Yt, expresada en toneladas por hectárea,
considerando la precipitación acumulada (Pt) y la temperatura media (Tt) como
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variables exógenas, para capturar tanto tendencias estacionales como choques cli-
máticos.

(3.32) Yt = 0,85 + 0,72Yt − 1 + 0,45εt − 1 + 0,28Pt − 0,15Tt + εt

donde
El coeficiente para Pt que es 0.28, sugiere una relación positiva entre las
lluvias y la producción agrícola, donde un aumento del 1% en la pluviosidad
resulta en un alza del 0.28% en la cosecha, esto muestra lo mucho que la
agricultura de Honduras depende de esas lluvias de temporada [3].
El coeficiente para Tt con -0.15, señala el efecto dañino de las temperaturas
altas, algo bien común en estos tiempos de cambio climático[4].
Para evitar problemas, se corrigió la raíz unitaria usando diferenciación
(d=1), y comprobamos que todo estaba en orden con la prueba de Dickey-
Fuller aumentada (p-valor < 0.05). El AIC del modelo alcanzó 125.4, más
alto que los otros modelos que no incluían variables externas.

Para el análisis de cointegración, aplicaron el método de Ly y colegas (2024)[1].
Así se estudió la relación a largo plazo, entre producción agrícola (Yt) y un índice
mezclado de eventos extremos (EXTt), este ultimo se saca de las variaciones en
lluvias y temperatura. Johansen cointegration test usaron, estadístico de traza 18.5
y un p-valor < a 0.01 comfirmo una relación de equilibrio

(3.33) Yt = 2,1 + 0,65EXTt + εt

donde εt es estacionario una prueba ADF en los residuos un p-valor < que 0.05
esto indica que los impactos climáticos extremos como por ejemplo las sequías pro-
longadas generan desviaciones persistentes en la producción y de esta forma evitan
regresiones espurias.[1].

En modelado de eventos extremos, usando EVT, el método Peaks Over Threshold
(POT) se implementó para datos sobre umbrales, basándose en Coles (2001)[7] y
Van Tassell (2024)[2]. Respecto a las sequías o precipitación mínima, un umbral u
igual a 50 mm/mes fue definido, derivado de percentiles historicos de Honduras.
Para los desbordamientos de lluvia, se aplicó un umbral u = 300 mm/mes.

(3.34) σ(t) = 45,2 + 0,08t, ξ = 0,25

donde
ξ = 0.25 sugiere colas pesadas tipo Fréchet, perfectas para eventos extremos
inusuales, pongamos por ejemplo, inundaciones en Honduras[7].
σ(t) crecé con el pasar del tiempo t, lo que revela la intensificación de eventos
extremos causados por el cambio climático, con un asombroso aumento anual
del 8% en la escala[6].
Se convalidó la exactitud del ajuste con el estadístico Kolmogorov-Smirnov
(p-valor > 0.05) y el umbral óptimo se escogió con el método de Hill, asegu-
rando firmeza en las colas[2].

Estos parámetros se integran con el ACRI (2024)[6], donde la frecuencia de extremos
(FREQ) se estimó en 0.12 eventos/año (λ ≈ 0.12), y la intensidad (INT) en 1.8
(basado en GPD), corroborando riesgos agrícolas hondureños.
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Distribución de pérdida agregada y métricas de riesgo. La distribución de
pérdidas agregadas, se expone aquí, se derivó de simulaciones Monte Carlo com-
binadas con EVT y el modelo actuarial, inspiradas en Klugman et al. de 2019[9]
y Vanalle et al. del 2012[13]. Pérdidas que se miden como bajas en la producción
agrícola a causa de eventos severos, expresadas como el porcentaje del rendimiento
anticipado.

La pérdida agregada S se modela como una suma aleatoria de eventos extremos,
donde la frecuencia N ∼ Poisson(λ = 0.12) y severidad ξ ∼ GPD(ξ = 0.25, β =
45.2), esto según residuos de ARIMA-X [9]. Para descubrir la distribución empírica
de S, se llevaron a cabo, 10,000 simulaciones Monte Carlo, mostrando, sí una media
de pérdidas anuales del 15% en la producción agrícola hondureña.

Los momentos clave son[9]:
(3.35) E[S] = λE[Xi] ≈ 0,12 x 52,3 = 6,28 %

(3.36) V ar(S) = λV ar(Xi) + V ar(N)(E[Xi])2 ≈ 0,12 x 1200 + 0,12 x (52,3)2

≈ 144 + 327 ≈ 471 %
Donde E[Xi] y Var(Xi) surgen de la GPD, ilustrando la variabilidad extrema que
enfrenta Honduras en su clima[7].

Las métricas de riesgo comprenden el Value at Risk (VaR) y el Tail Value at Risk
(TVaR) las cuales son calculadas en el nivel q = 0.95(riesgo del 5%):
(3.37) V aR0,95 = ı́nf x : P (S > x) ≤ 0,05 ≈ 18,5 %

(3.38) TV aR0,95 = E[S|S > V aR0,95] ≈ 25,2 %
Esas métricas sugieren, que en el 5% de los escenarios más críticos, las pérdidas en la
agricultura superan el 18.5%, promediando condicionalmente un 25.2%, revelando
el golpe que asestan eventos como las sequías en Honduras[6]. La distribución empí-
rica presenta asimetría positiva, un sesgo de 1.2, junto con colas pesada verificadas
por EVT, esto respalda el empleo de GPD en lugar de distribuciones normales[2].

Calculo de prima actuarial. Esta sección evalúa primas actuariales equilibra-
das, fundadas en el modelo de riesgo total y el chance de insolvencia, basándose
en Dickson (2016)[10] y Jiménez Hernández y Maldonado Santiago (2011)[12]. Las
primas cubren perdidas anticipadas y riesgos considerables, combinando EVT con
el modelo Cramér-Lundberg, esto para mantener la estabilidad financiera de los
seguros agrícolas en Honduras.

El cálculo de la prima neta (cn) requiere hallar el valor esperado de las pérdidas, y
añadir un margen de seguridad, como el 10% para cubrir esa variabilidad[9].
(3.39) cn = (1 + θ)× E[S] ≈ 1,1× 6,28 % = 6,91 %
donde θ= 0.1 es el margen actuarial, reflejando incertidumbre climática[1].
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Para primas brutas, se incorpora la probabilidad de ruina ψ(u), en el modelo
Cramér-Lundberg, con reservas iniciales u = 20% basado en capital agrícola hon-
dureño y primas constantes c[10]:

(3.40) ψ(u) = λµ

c
exp

(
−u(c− λµ)

λµ2

)

Donde µ, qué resulta ser igual a E[Xi] aproximadamentente a 52.3%, y λ igual
a 0.12. Para un c = 8% la prima bruta ajustada, si tenemos que ψ(u) ≈ 0.03 es
un 3% de probabilidad de la ruina, cumpliendo los criterios de solvencia (ψ(u) <
0.05),[12] . Esto, se confirma con simulaciones exhibiendo que primas menores del
7% incrementan el peligro de insolvencia, ya en escenarios, extremos[5].

Integrando con ACRI [6] las primas escalan según exposición económica ,EXP ≈
0.4, basado en el PIB agrícola hondureño, dando primas variadas, un 7.5% en si-
tios muy peligrosos para el clima (ejemplo las costa ) y 6.2% donde no hay tanta
amenaza. Estos cálculos respaldan seguros indexados climáticos minimizando los
riesgos de productores hondureños[4].

Estos resultados claramente demuestran la eficacia del modelo, para evaluar los ries-
gos climáticos agrícolas en Honduras; así ofreciendo herramientas importantes para
las políticas de mitigación y seguros. Sin embargo, las limitaciones surgen debido
a la dependencia de datos históricos y supuestos de independencia. Próximamente,
podrían usarse extensiones con machine learning, para ajustes dinámicos[5].

Concluciones

1. Combinando ARIMA-X, para comprender la dinámica temporal y la coin-
tegración a largo plazo , y EVT para modelar eventos extremos tales como
sequías e inundaciones , resulto en una robusta estimación de riesgos. Los
parametros GPD (ξ = 0.25, σ(t) creciente) revelaron colas pesadas en las
distribuciones de perdidas, confirmando la vulnerabilidad de la agricultura
hondureña frente a eventos climáticos poco comunes pero con gran impacto,
como aquellos ligados al cambio climático .

2. La simulaciones de pérdidas agregadas revelaron un promedio anual del
6.28% en la producción agrícola, ademas un VaR al 95% de 18.5%, jun-
to con un TVaR del 25.2% . estos resultados revelan el efecto de los climas
extremos, sobrepasando cálculos tradicionales que obvian colas pesadas, y
justifican la importancia de los métodos EVT para escenarios no estáticos .

3. Las primas netas se calcularon al 6.91%, pero subieron al 7-8% como pri-
mas brutas, esto para conservar una chance de ruina menor al 3% según el
modelo Cramér-Lundberg . Así es más fácil crear seguros climáticos inde-
xados, distintos por zonas como las costas con más riesgos de modo que se
disminuye la vulnerabilidad económica de los agricultores hondureños .

4. Los resultados respaldan las estrategias de mitigación en Honduras, por ejem-
plo, inversiones en infraestructura que resiste eventos extremos (ejemplo sis-
temas de riego) y seguros subvencionados, todo esto en linea con el ACRI
.Al combinar el EVT con la simulación Monte Carlo , el modelo ofrece herra-
mientas para hacer pronósticos precisos, algo fundamental en un pais donde
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la agricultura constituye una porción importante del PIB y es muy suscep-
tible a las cambiantes condiciones climáticas.

5. Esta investigación profundiza la literatura usando EVT actuarial en sectores
agrícolas en crecimiento,además de exhibir cómo residuos de modelos eco-
nométricos pueden alimentar análisis de extremos. Además, se atestiguan
propiedades de EVT como invarianza y estabilidad de colas , además valida
la integración metodológica para evitar regresiones en series no estacionarias
.

Referencias
1. Ly, S., Riam, M., and Hizam, H. Cointegration Analysis of Crop Yields and Extreme Weather

Factors Using Actuaries Climate Index with Application of Bonus–Malus System, Risks, Vol.
12, 2024.

2. Van Tassell, G. H. Utilizing Extreme Value Theory to Uncover Yield Distributions from Farm
and County Level Historical Corn Yields, Ph.D. Thesis, University of Nebraska-Lincoln, 2024.

3. Zulfiqar, F., et al. Agricultural Forecasting in a Changing Climate: ARIMA-X Model of Cereal
Production in Tanzania, ResearchGate (Preprint), 2024.

4. Sarker, S. A., and Sarker, M. A. R. Extreme weather events, climate expectations, and agri-
cultural export dynamics, Economic Analysis and Policy, Vol. 83, pp. 696-708, 2024.

5. Osepa, E. R., and Mailafia, D. Investment risk forecasting model using extreme value theory
approach combined with machine learning, AIMS Mathematics, Vol. 9, No. 8, pp. 19143-19172,
2024.

6. American Academy of Actuaries. Actuaries Climate Risk Index (ACRI), Update Report, 2024.
7. Coles, S. An Introduction to Statistical Modeling of Extreme Values, Springer, London, 2001.
8. Enders, W. Applied Econometric Time Series, 4th Edition, John Wiley & Sons, New York,

2014.
9. Klugman, S. A., Panjer, H. H., and Willmot, G. E. Loss Models: From Data to Decisions, 5th

Edition, John Wiley & Sons, New York, 2019.
10. Dickson, D. C. M. Insurance Risk and Ruin, 2nd Edition, Cambridge University Press, New

York, 2016.
11. Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2019). Loss Models From Data ro Decisions,

5 th., vol. 6, no. 1. Hoboken.
12. Jiménez Hernández, J. D. C., & Maldonado Santiago, A. D. (2011). Probabilidad de ruina en

el modelo clásico de Cramer-Lundberg. REPOSITORIO NACIONAL CONACYT.
13. Vanalle, R. M., Lucato, W. C., Vieira Júnior, M., & D Sato, I. (2012). Uso de la Simula-

ción Monte Carlo para la Toma de Decisiones en una Línea de Montaje de una Fábrica.
Información tecnológica, 23(4), 33-44.

Maestría en Matemática, Universidad Nacional Autónoma de Honduras.
Dirección de correo electrónico: axelcruzlopez@gmail.com

89



MODELOS VAR INTEGRADO CON VOLATILIDAD
ESTOCASTICA MATRIZ EXPONENCIAL APLICADO A LOS

TIPOS DE CAMBIO DE LA ALIANZA DEL PACIFICO

NELSON MOLINA MOLINA

Resumen. Los modelos autorregrsivos vectoriales (VAR) se emplean para cap-
turar las relaciones dinámicas de series de tiempo multivariadas. Por otro la-
do, los modelos de volatilidad estocástica multivariada Matriz Exponencial
(MESV) capturan la variabilidad cuando cambia en el tiempo , correlaciones
dinámicas, y el efecto de apalancamiento. Por lo anterior, en la Tesis se pro-
pone la integración un modelo VAR y un modelo MESV (VAR-MESV). Para
la elección del orden VAR-MESV mas adecuado se propone el uso del Criterio
de Información de Desviación (DIC). Se presentarán formulas para estimar la
asimetría de Mardia y la Curtosis de Koziol. Se hará una aplicación a los tipos
de cambio de cuatro países de la Alianza del Pacifico (Chile, Colombia, México
y Perú). Para estimar los paramétros se propone el uso de métodos de Monte
Carlo vía Cadenas de Markov (MCMC).
Abstract. Vector autoregressive (VAR) models are used to capture the dy-
namic relationships of multivariate time series. On the other hand, Matrix
Exponential Stochastic Volatility (MESV) models capture time-varying vola-
tility, dynamic correlations, and leverage effects. Therefore, this thesis proposes
the integration of a VAR model and a MESV model (VAR–MESV). To select
the most suitable order of the VAR–MESV model, the Deviance Information
Criterion (DIC) is proposed. Formulas will be presented to estimate Mardia’s
multivariate skewness and Koziol’s kurtosis. An empirical application will be
carried out using exchange rates from four Pacific Alliance countries (Chile,
Colombia, Mexico, and Peru). For parameter estimation, Markov Chain Monte
Carlo (MCMC) methods are proposed.

1. Introducción

Este trabajo tiene su motivación en el artículo de Cruz y Villafranca [1], en el
cual integran un modelo autorregresivo vectorial (VAR) y un modelo de volatili-
dad estocástica multivariada con efecto de apalancamiento cruzado (MSV). En su
propuesta, la parte VAR captura las relaciones dinámicas entre las series tempora-
les multivariadas, mientras que la parte MSV captura la variabilidad de las series
cuando cambia en el tiempo. Para estimar el modelo utilizan métodos de Monte
Carlos Via Cadenas de Markov (MCMC).

Aunque el modelo propuesto por Cruz y Villafranca [1] es capaz de medir el
efecto de apalancamiento cruzado —es decir, el efecto de un choque de las variables
endógenas en el tiempo t sobre los choques de la volatilidad en el tiempo t + 1—,

Fecha: Agosto 2025.
Palabras y frases clave. Volatilidad estocástica, tipo de cambio, matriz exponencial, apalan-

camiento cruzado,dinámica multivariada.
1
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asume correlaciones constantes en en choques de las variables endogenas. Sin em-
bargo, en muchas aplicaciones es importante permitir que estas correlaciones varíen
en el tiempo. Por ejemplo, las series de tiempo financieras tienden a moverse juntas
en tiempos de crisis (alta correlación), mientras que en épocas de estabilidad suelen
presentar menor correlación.

Por lo anterior, el primer objetivo de la Tesis es proponer un modelo VAR inte-
grado con un modelo de volatilidad estocástica multivariada con efecto de apalan-
caminto cruzado que permita que las correlaciones de los choques de las varibles
endogenas varíen en el tiempo. Para este fin, se integrará al modelo VAR el mo-
delo de volatilidad estocástica matriz exponencial (MESV) propuesto por Ishihara,
Omori y Asai [3]. El segundo objetivo es proporcionar algunas propiedades del mo-
delo VAR-MESV, por ejemplo, la asimetría de Mardia y la curtosis de Koziol. Este
objetivo es motivado por una conferencia de Cruz y Villafranca [4] en la que ex-
ponen propiedades de asimetría y curtosis de un modelo VAR-MSV integrado con
una distribución t Student. El tercer objetivo es proporcionar una metodología con
el fin de ajustar el modelo VAR-MESV para estimar los parámetros (se adaptara
la metodología de Cruz y Villafranca [1]).

El cuarto objetivo de la Tesis es aplicar el modelo a datos simulados y reales con
el propósito de responder las siguientes preguntas:

1. Se simularan datos con el modelo VAR-MESV en que haya periodos de alta
correlación, periodos de baja correlación y periodos de correlación constan-
te con las siguientes configuraciones: (a) Sin apalancamiento Cruzado, (b)
Con apalancamiento Cruzado. Se estimaran los datos simulados con cuatro
configuraciones de modelos: (a) Un modelo VAR-MESV sin apalancamiento
cruzado, (b) Un modelo VAR-MESV con apalancamiento cruzado, (c) Un
modelo VAR-MSV sin apalancamiento cruzado, (d) Un modelo VAR-MSV
con apalancamiento cruzado. Esto se hara con el propósito de responder la
pregunta ¿ Qué sucede si se estiman datos que fueron generados por un mo-
delo VAR-MESV (con y sin apalancamiento cruzado) con un modelo VAR-
MSV (con y sin apalancamiento cruzado)?.

2. Se estimaran datos reales consitentes en tipos de cambio de cuatro países
de la Alianza del Pacífico (Chile, Colombia, México y Perú). La Alianza del
Pacífico fue creada en el 2011 con el objetivo de impulsar un mayor creci-
miento, desarrollo y competitividad de sus economías, promoviendo la libre
circulación de bienes, servicios, capitales y personas. Por lo anterior, se ajus-
tarán cuatro configuraciones de modelos: (a) Un modelo VAR-MESV sin
apalancamiento cruzado, (b) Un modelo VAR-MESV con apalancamiento
cruzado, (c) Un modelo VAR-MSV sin apalancamiento cruzado, (d) Un mo-
delo VAR-MSV con apalancamiento cruzado. Esto se hará con el propósito
de responder las preguntas ¿ Existe evidencia de un cambio en las relaciones
a nivel de choques de los tipos de cambio antes y después del 2011? ¿ Existe
evidencia de que los tipos de cambio pueden ser explicadas por observaciones
pasadas? ¿ Existe evidencia de efecto de apalancamiento y apalancamiento
cruzado en los tipos de cambio? ¿ Existe evidencia de que los tipos de cambio
esten relacionados a nivel de variabilidad?.
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Los objetivos antes mencionados se llevaran a cabo tomando como punto de
partida los trabajos de Cruz y Villafranca [1, 4, 5]. Luego se adaptara al trabajo de
Ishihara, Omori y Asai [3]. Todo lo expuesto en esta sección esta sujeto a cambios.

Línea de investigación

La investigación se enmarca en la línea de Estadística multivariada y modelos
lineales generalizados, dado que integra modelos dinámicos multivariados (VAR y
MESV) para analizar la evolución conjunta y la interdependencia de múltiples va-
riables económicas en este caso, los tipos de cambio de los países de la Alianza
del Pacífico. El estudio emplea herramientas propias de la estadística multivariada,
como el análisis de covarianzas, medidas de asimetría y curtosis, y métodos baye-
sianos de estimación mediante cadenas de Markov Monte Carlo (MCMC). Además,
el modelo propuesto contribuye al desarrollo de nuevas técnicas de inferencia en
contextos multivariados dinámicos, fortaleciendo la investigación científica en mo-
delización estadística dentro del eje prioritario “Cultura, ciencia y educación” de la
Universidad Nacional Autónoma de Honduras (UNAH).

2. Justificación

El análisis de la volatilidad en los mercados financieros resulta fundamental para
comprender la transmisión de choques económicos y la interacción entre activos en
economías abiertas. En el contexto de los países de la Alianza del Pacífico (Chile,
Colombia, México y Perú), el tipo de cambio desempeña un papel determinante
en la competitividad, la estabilidad macroeconómica y la formulación de políticas
monetarias. No obstante, los modelos tradicionales como los GARCH o los VAR con
varianza constante presentan limitaciones al asumir correlaciones fijas y dinámicas
simplificadas.

El modelo de Volatilidad Estocástica Matriz Exponencial (MESV) propuesto por
Ishihara, Omori y Asai [3] ofrece una alternativa robusta al garantizar la positivi-
dad definida de las matrices de covarianza mediante una transformación exponen-
cial matricial, permitiendo además capturar correlaciones dinámicas y efectos de
apalancamiento cruzado. Integrar este modelo dentro de un marco autorregresivo
vectorial (VAR-MESV) proporciona una herramienta flexible para analizar la evo-
lución conjunta de los tipos de cambio y sus volatilidades, incorporando tanto los
efectos contemporáneos como los retardos en las relaciones entre países.

En el ámbito aplicado, ofrece evidencia empírica sobre la dependencia dinámica
y cambiaria en la Alianza del Pacífico, información clave para la gestión del riesgo
financiero y la estabilidad cambiaria. Desde el punto de vista científico, el pro-
yecto fortalece el campo de la modelación estadística y econométrica, al extender
los modelos tradicionales de volatilidad estocástica hacia un marco multivariado,
dinámico y bayesiano más general. La propuesta del modelo VAR–MESV repre-
senta una integración innovadora entre la dependencia temporal capturada por el
modelo autorregresivo vectorial (VAR) y la estructura de correlaciones dinámicas
y apalancamiento cruzado del modelo de Volatilidad Estocástica Matriz Exponen-
cial (MESV). Esta combinación proporciona una herramienta metodológicamente
sólida y flexible para la inferencia bayesiana en contextos financieros complejos,
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permitiendo analizar simultáneamente la dinámica de los rendimientos y la evolu-
ción temporal de sus covarianzas.

En términos metodológicos, el estudio se desarrolla dentro del área de Estadística
Multivariada y Series de Tiempo, con énfasis en el desarrollo y aplicación de modelos
lineales y dinámicos para el análisis de fenómenos económicos y financieros. El
enfoque integra técnicas de modelización multivariada, como los modelos VAR,
con extensiones que incorporan volatilidad estocástica, correlaciones dinámicas y
efectos de apalancamiento cruzado, contribuyendo así al avance de la investigación
aplicada en economía y finanzas.

3. Antecedentes

Uhlig [7] introduce la volatilidad estocástica multivariada sin restricciones en el
contexto de los modelos autorregresivos vectoriales. El modelo que propuso es de
la siguiente manera

Yt = A0Vt +B1yt−1 + . . .+Akyt−k +R−1
t εt, t = 1, . . . , n,(3.1)

Ht+1 = 1
λ
RTt ΣtRt, t = 0, . . . , n− 1,(3.2)

donde

εt ∼ N(0, Ip), Σt ∼ βp
(
v + c+ kp

2 ,
1
2

)
,

Yt , t = 1−k, . . . , n de dimensión p×1 son datos observables. Vt de dimensión c×1
denota regresores deterministas como una constante y una tendencia de tiempo.
La matriz de coeficientes B0 es de dimensión p × c. Las matrices de coeficientes
Bi , i = 1, . . . , k son de dimensión p × p. v > p − 1 y λ > 0 son parámetros.
εt , t = 1, . . . , n son de dimensión p × 1. Σt , t = 1, . . . , n son de dimensión p × p
distribuidos independientemente. Rt denota la descomposición de Cholesky supe-
rior de Hb y βm(a, b) denota la distribución beta multivariada. Uhlig [7] escogió la
distribución beta multivariante para explotar una conjugación entre esa distribu-
ción y la distribución Wishart para que la integración sobre el choque no observado
en la matriz de precisión se puede realizar de forma cerrada, lo que lleva a una
generalización de las fórmulas estándar de filtro de Kalman, el problema de filtrado
no lineal. El estudio de los modelos autorregresivos vectoriales bayesianos con vo-
latilidad estocástica (BVAR–SV) se origina a partir del reconocimiento de que las
relaciones macroeconómicas y financieras varían en el tiempo y no pueden capturar-
se adecuadamente mediante modelos estáticos. Uhlig [7] escogió dicha distribución
por su conjugación con la distribución Wishart, lo que permite realizar la integra-
ción sobre la matriz de precisión de forma cerrada y obtener una generalización del
filtro de Kalman para el problema de filtrado no lineal.

Posteriormente, Cogley [8] propuso una estrategia de filtrado bayesiano para es-
timar la tendencia de crecimiento de la “nueva economía”. Su modelo autorregresivo
vectorial bayesiano con parámetros que varían en el tiempo se expresa como:

Yt = XT
t βt + εt, εt ∼ N(0,Σt),
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donde Xt incluye constantes y rezagos de Yt, y βt evoluciona como una caminata
aleatoria:

βt = βt−1 +Wt, Wt ∼ N(0, Q).
Para modelar la varianza, Cogley adopta una versión multivariada del modelo de
Jacquier et al. [10], donde:

Σt = B−1Ht(B−1)T , log(hit) = log(hit−1) + σiηit.

Este esquema permite capturar la evolución temporal de la volatilidad bajo un
enfoque bayesiano plenamente jerárquico.

A continuación, Cogley y Sargent [9] extendieron este marco a la política mone-
taria mediante un modelo autorregresivo vectorial con parámetros y volatilidades
estocásticas variables, estimando densidades posteriores de interés para la inflación,
el desempleo y la tasa de interés. Su enfoque demostró que los cambios estructurales
en la política económica pueden representarse adecuadamente dentro de un VAR
con parámetros dinámicos.

En una línea complementaria, Primiceri [11] estimó un modelo autorregresivo
vectorial estructural con parámetros variando en el tiempo (TVP–SVAR) con el
propósito de estudiar las causas del bajo desempeño económico de Estados Unidos
en los años setenta y ochenta. Su especificación general es:

Yt = Vt +A1,tYt−1 + . . .+Ak,tYt−k +B−1
t Σtεt,

donde los parámetros siguen procesos estocásticos:

βt = βt−1 + wt, λt = λt−1 + %t, log(σt) = log(σt−1) + ηt.

Este diseño permitió identificar cambios en la conducta de la política monetaria y
del sector privado, así como medir su impacto sobre la dinámica macroeconómica.

Benati [12] aplicó posteriormente un modelo TVP–SVAR bayesiano similar pa-
ra investigar la llamada Gran Moderación en el Reino Unido, mostrando que la
disminución de la volatilidad macroeconómica y los cambios en política monetaria
explican la estabilidad inflacionaria observada en las décadas recientes. De igual
forma, Galí y Gambetti [13] utilizaron un modelo estructural con parámetros y
volatilidades estocásticas variables para analizar los cambios en la economía esta-
dounidense posteriores a la Segunda Guerra Mundial, destacando la relevancia de
los procesos de volatilidad temporal.

Basándose en estas contribuciones, Gambetti et al. [14] propusieron un mode-
lo similar para realizar pronósticos en tiempo real de variables macroeconómicas
(desempleo, inflación y tasa de interés), evaluando su desempeño mediante errores
cuadráticos medios y puntuaciones logarítmicas. Encontraron que los modelos con
parámetros y volatilidad estocástica variables mejoran significativamente la capa-
cidad predictiva respecto a modelos tradicionales.

Clark [15] incorporó la volatilidad estocástica dentro de un VAR bayesiano pa-
ra realizar pronósticos de densidad en tiempo real de variables macroeconómicas
de Estados Unidos, tales como el crecimiento del producto, desempleo, inflación y
tasa de fondos federales. Más adelante, Clark y Ravazzolo [16] compararon la preci-
sión predictiva de diferentes configuraciones de volatilidad (constante, estocástica,
estacionaria, con colas pesadas y GARCH), concluyendo que los modelos con vola-
tilidad estocástica y parámetros dinámicos son los más robustos para la predicción
y la inferencia.
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De manera más reciente, Chiu et al. [17] propusieron un modelo autorregresivo
vectorial con errores t de Student y volatilidad estocástica, que permite capturar
tanto la heterocedasticidad de baja frecuencia como los episodios de alta volatilidad
y valores extremos. Este modelo, definido como:

Yt = V +A1Yt−1 + . . .+AkYt−k + Σ1/2
t εt, εt ∼ N(0, Ip),

Σt = B−1Ht(B−1)T , ln(hit) = ln(hi,t−1) + ηit,

integra colas pesadas en la estructura de los choques, ofreciendo una representación
más realista frente a valores atípicos y choques extremos.

Mumtaz [18, 19] desarrolló versiones generalizadas de los modelos VAR–SV, in-
cluyendo volatilidad en la media y algoritmos MCMC optimizados, ampliando su
aplicabilidad a contextos financieros internacionales. Del mismo modo, Ding et al.
[20] emplearon un TVP–SVAR–SV para estudiar los efectos cambiantes de la in-
certidumbre financiera y geopolítica sobre los mercados de materias primas, desta-
cando la utilidad de los enfoques bayesianos de volatilidad estocástica para analizar
interdependencias complejas y no lineales.

El modelo de (MSV) propuesto por Ishihara y Omori [2] y adaptado por Cruz y
Villafranca [1] permite capturar la heterocedasticidad condicional y las posibles no
linealidades en las relaciones simultáneas entre variables endógenas (ver Primiceri
[11]). Su formulación general es la siguiente:

yt = ν +A1yt−1 + · · ·+Akyt−k + V
1/2
t εt, t = 1, . . . , n,(3.3)

αt+1 = Φαt + ηt, t = 1, . . . , n− 1,(3.4)

α1 ∼ Np(0,Σ0), Vt = diag
(

exp(α1t), . . . , exp(αpt)
)
,(3.5)

donde ν es un vector de interceptos de dimensión p × 1, Ai son matrices de coe-
ficientes p × p, εt ∼ N(0,Σεε) y los procesos de volatilidad αt = ht − µ evolucio-
nan según una caminata autorregresiva de primer orden con matriz de persistencia
Φ = diag(φ1, . . . , φp).

Los choques conjuntos (εt, ηt)′ siguen una distribución normal multivariada:
(
εt
ηt

)
∼ N

(
0,Σ =

(
Σεε Σεη
Σηε Σηη

))
,

donde la matriz Σεε captura la correlación entre los choques de las variables en-
dógenas, Σηη la correlación entre los choques de la volatilidad, y Σεη el efecto de
apalancamiento cruzado (cross leverage effect) que vincula los choques contempo-
ráneos de las variables con los de la volatilidad futura (ver Ishihara et al. [3]).

Finalmente, la condición de estacionariedad se garantiza mediante

vec(Σ0) =
(
Ip2 − Φ⊗ Φ

)−1 vec(Σηη),
lo cual asegura la existencia de una solución estable para la dinámica estocástica de
la varianza. Asimismo, los trabajos de Ishihara, Omori y Asai [2, 3] contribuyeron
decisivamente al desarrollo de los modelos Matrix Exponential Stochastic Volati-
lity (MESV) con apalancamiento cruzado, consolidando la estimación bayesiana
eficiente para sistemas multivariados de gran dimensión.

En conjunto, estas contribuciones constituyen la evolución metodológica que sus-
tenta la presente investigación, la cual busca modelar la dinámica macroeconómica
bajo un enfoque bayesiano con parámetros y volatilidades estocásticas variables,
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incorporando los avances recientes de la literatura en estimación multivariada y
errores con colas pesadas.

4. Modelo VAR-MESV

En esta sección se presenta el cuerpo central de este trabajo. El punto de partida
de la tesis titulada Modelos VAR Integrado con Volatilidad Estocástica Matriz Ex-
ponencial Aplicado a los Tipos de Cambio de la Alianza del Pacífico es el trabajo de
Cruz y Villafranca [1]; por lo tanto, en primer lugar se describe detalladamente el
modelo VAR-MSV propuesto por Cruz y Villafranca. Posteriormente, se presenta la
metodología que emplean para la estimación de los parámetros y la determinación
del mejor orden del modelo VAR-MSV(k). Se expone el modelo de volatilidad esto-
castica matriz exponencial propuesto por Ishihara, Omori y Asai [3].Por ultimo,se
precenta el modelo autorregresivo vectorial integrado con volatilidad estocástica
matriz exponencial (VAR-MESV),junto con su metodología de estimación de pará-
metros y el procedimiento para seleccionar el mejor orden VAR-MESV(k).

4.1 Modelo VAR-MSV
El modelo propuesto por Cruz y Villafranca [1] es un modelo autorregresivo vec-

torial con volatilidad estocástica multivariada . La volatilidad estocástica modelada
es la propuesta por Ishihara y Omori [2]. En este modelo, los choques de las va-
riables endógenas están correlacionados, y se diseñó así para capturar las posibles
relaciones lineales entre ellos. De igual manera, los choques de la volatilidad están
correlacionados. Los choques de las variables endógenas en el tiempo t y los choques
de la volatilidad en el tiempo t+ 1 están correlacionados y, de esta forma, medir el
efecto de los choques de las variables endógenas en el tiempo t en los choques de
la volatilidad en el tiempo t + 1. De esta manera se puede medir el efecto de los
choques económicos en la varianza condicional de las variables macroeconómicas .

Las matrices de coeficientes estan diseñadas para medir la dependencia lineal
de las observaciones pasadas en las observaciones actuales,en otras palabras, miden
la fuerza con las que las observaciones pasadas afectan las actuales. El modelo
VAR-MSV es de la siguiente manera

yt = ν +A1yt−1 + · · ·+Akyt−k + wt, wt = V
1
2
t εt, t = 1, . . . , n,(4.1)

αt+1 = Φαt + ηt, t = 1, . . . , n− 1,(4.2)
α1 ∼ Np(0,Σ0),(4.3)

V
1
2
t = diag

(
exp
(α1t

2

)
, . . . , exp

(αpt
2

))
,(4.4)

Φ = diag(φ1, . . . , φp),(4.5)
(
εt

ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη
Σηε Σηη

)
,(4.6)

vec(Σ0) = (Ip2 − Φ⊗ Φ)−1vec(Σηη).(4.7)
donde yt, t = −k+1, . . . , 0, 1, . . . , n, son variables disponibles de dimensión p×1.

εt, t = 1, . . . , n, son choques gaussianos de dimensión p× 1. El vector ν es un tér-
mino de intercepción de dimensión p×1, mientras que Ai, i = 1, . . . , k, son matrices
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de coeficientes de dimensión p × p. αt = ht − µh es de dimensión p × 1, donde ht
es el correspondiente vector de log volatilidad y µh es el vector media. El operador
vec convierte una matriz A = [a1, . . . , ap], ai es de dimensión p× 1, i = 1, . . . , p, en
un vector (aT1 , . . . , aTp )T de dimensión p2×1. El operador⊗ es el producto kronecker.

Los elementos de las matrices de coeficientes Alij , j = 1, . . . , p, l = 1, . . . , k,
denotan la dependencia lineal de yit (valor actual de la serie i) en yj,t−l, j 6=
i, l = 1, . . . , k (valores pasados de las otras series) en la presencia de yi,t−l, l =
1, . . . , k (valores pasados de la serie i). Por lo que, Alij , j = 1, . . . , p, l = 1, . . . , k,
es el efecto condicional de yj,t−l, j 6= i, l = 1, . . . , k, sobre yit en presencia de
yi,t−l, l = 1, . . . , k. Sí Alij = 0 para todo l y j 6= i, entonces yit no depende de
yj,t−l, j 6= i, l = 1, . . . , k pero si dé yi,t−l, l = 1, . . . , k. Por otro lado, sí Alij = 0
para todo l y j = i, entonces yit no depende de yi,t−l, l = 1, . . . , k pero si dé
yj,t−l, j 6= i, l = 1, . . . , k.

Los elementos de la matriz Φ en la ecuación 4.5 estan relacionados con la percis-
tencia a los choques a la volatilidad y en su modelo −1 < φi < 1, i = 1, . . . , p. La
percistencia de los choques a la volatilidad es el efecto del choque actual sobre el
pronostico de la volatilidad y eventualmente desaparece.La vida media de un cho-
que viene dada por − log(2)/ log |φi|, que en series de tiempo diarias,es el numero
de dias transcurridos para que el impacto del choque se redusca a la mitad. Cuando
φi es cercano a 1 y σii,ηη es cercano a cero, la evolución de la volatilidad de una
serie de tiempo es muy suave.

La volatilidad estocastica pretende capturar la posible heterosedastisidad de los
choques y las posibles no linealidades en las relaciones simultaneas entre las varibles
del modelo. En series de tiempo diarias, un día en el que αt = 0 puede ser visto
como un día normal. Un día normal es uno en el que la velocidad de evolución
de la volatilidad no es ni demaciada rápida ni demaciada lenta, en otras palabras,
asume un valor promedio. Luego, σii,εε puede ser interpretado como la varianza
condicional en un día normal. La varianza general de wit es denotada por σii,ww y
100(1−σii,εε/σii,ww) es el porcentaje de la varianza que es atribuida a la presencia
de heterocedasticidad en la serie temporal i. El flujo de la volatilidad de wii,ww es
dado por exp 0,5σii,ηη/(1− φ2

i ).

Para encontrar la función de verosimilitud del modelo dado por las ecuaciones
4.2. Las submatrices Σεε y Σηη se usan para capturar la posible correlación entre los
choques de las variables endógenas y los choques de la volatilidad respectivamente.
Además, la submatriz de covarianza Σεη se usa para calcular la posible correlación
entre los choques de las variables endógenas en el mes actual y los choques de la
volatilidad del siguiente mes.

Para encontrar la función verosimilitud del modelo de las ecuaciones (4.1)-(4.7)
los autores realizaron una leve modificación a la verosimilitud propuesta por Is-
hihara y Omori [2], definiendo Yt = [1, yTt−1, . . . , y

T
t−k]T y β = vec(v,A1, . . . , Ak)

de dimensión (kp+ 1)× 1 y (kp2 + p)× 1 respectivamente. Luego, reescribieron el
modelo de la ecuación (4.1) de la siguiente manera
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(4.8) yt = (Y Tt ⊗ Ip)β + wt

Luego se definen θ = (φ,Σ, β, ν), φ = (φ1, . . . , φp)T , α = (αT1 , . . . , αTn )T , Y n =
(y1, . . . , yn), Y k = (y−k+1, . . . , y0) y 1p = [1, . . . , 1]T , y obtienen

f(λ, α, Y n|θ, Y k) = f(Y n, α|λ, θ, Y k)f(λ|θ, Y k)

∝ exp
{

n∑

t=1
`t −

1
2α

T
1 Σ−1

0 α1 −
1
2

n−1∑

t=1
(αt+1 − Φαt)TΣ−1

ηη (αt+1 − Φαt)
}

(4.9)

×
(

n∏

t=1
λ
p+ν

2 −1
t

)
|Σ0|−1/2|Σ|−(n−1

2 )|Σεε|−1/2,

donde

`t =− 1
2(yt − ((Y Tt ⊗ Ip)β + µt))TΣ−1

t (yt − ((Y Tt ⊗ Ip)β + µt))

− 1
21Tp αt + const,(4.10)

µt =V
1
2
t mt,(4.11)

Σt =V
1
2
t StV

1
2
t ,(4.12)

mt =
{

ΣεηΣ−1
ηη (αt+1 − Φαt), t < n,

0, t = n,
(4.13)

St =
{

Σεε − ΣεηΣ−1
ηη Σεη, t < n,

Σεε, t = n.
(4.14)

4.2 Metodo de Estimación del Modelo VAR-MSV
Para estimar los parametros los autores usan inferencia Ballesiana calculando

las distribuciones a posteriori por medio del algoritmo MCMC de seis bloques que
es dado por

1. Inicializar α, φ,Σ, β.
2. Generar β|α, φ,Σ, Y n, Y k.
3. Generar α|φ,Σ, β, Y n, Y k.
4. Generar Σ|β, α, φ, Y n, Y k.
5. Generar φ|Σ, β, α, Y n, Y k.
6. Ir a 2.

Para generar β encuentran la función de densidad posterior en forma cerrada,
escogiendo la distribución priori f(β) de Litterman [23, 24], la cual corresponde a
una distribución normal multivariante con media priori µβ y matriz de covarian-
za priori Σβ . Usan el algoritmo del muestreador de Gibbs para generar una muestra.

Para generar α aplican el método muestra de múltiples movimientos de Ishiha-
ra y Omori [2], sustituyen yt por la serie transformada y∗t = yt − (Y >t ⊗ Ip)β̂,
donde β̂ proviene del segundo paso del algoritmo MCMC de seis bloques. El mé-
todo muestra de múltiples movimientos propuesto por Ishihara y Omori [2] divide
α = (αT1 , . . . , αTn )T en K + 1 bloques usando el algoritmo de Shephard y Pitt
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[25]. Encuentran la distribución completa de densidad conjunta condicional de las
perturbaciones del i-ésimo bloque y usan expansión de Taylor de segundo orden
alrededor de la moda y la aproximan a una densidad normal que se usa para el
algoritmo de Aceptación-Rechazo (AR). Como la dimensión de la matriz de cova-
rianza crece cuando el tamaño de los bloques crece convierten la densidad normal
aproximada en un modelo de espacios de estado auxiliar. Aplican el suavizador de
perturbaciones de Koopman [26] repetidas veces al modelo de espacios de estados
auxiliar para encontrar la moda y obtienen un modelo de espacios de estado gaus-
siano lineal aproximado. Por último, aplican un algoritmo de Metropolis-Hastings
de Aceptación-Rechazo (AR-MH) en el que se utiliza un simulador de perturba-
ciones [27, 28] al modelo de espacios de estado gaussiano lineal aproximado para
generar un candidato.

Para generar φ y Σ, sustituyen yt por la serie transformada y∗t = yt − (Y >t ⊗
Ip)β̂, donde β̂ proviene del segundo paso del algoritmo MCMC de seis bloques. Las
funciones de densidad a priori y las distribuciones posteriores condicionales de φ
y Σ se toman de Ishihara y Omori [2]. Dado que las distribuciones condicionales
completas no tienen forma cerrada, los autores emplean un paso de Metropolis–
Hastings para generar las muestras correspondientes de φ y Σ.

4.3 Selección del Orden VAR-MSV
Para escoger el mejor modelo VAR-MSV usan la metodoligia propuesta por Is-

hihara y Omori [2]. Para cada modelo estimado, calculan el Criterio de Información
de Desviación (DIC) de Spiegelhalter et al. [29]. La medida DIC es definida por

DIC = Eθ|yn [D(θ)] + PD,(4.15)

donde

PD = Eθ|yn [D(θ)]−D
(
Eθ|yn [θ]

)
, D(θ) = −2 log f(Y n | θ).(4.16)

Para calcular Eθ|yn [D(θ)], se puede aproximar mediante 1
M

∑M
m=1 D

(
θ(m)) don-

de θ(m) son remuestreados a partir de la distribución posterior. El error estándar del
estimador es obtenido estimando repetidamente Eθ|yn [D(θ)]. D

(
Eθ|yn [θ]

)
es igual a

D(θ) evaluado en la media posterior. Ishihara y Omori [2] configuraron M = 100,
I = 10000 y repitieron 10 veces Eθ|yn [D(θ)] para obtener el error estándar. Utilizan
el filtro de partículas auxiliar propuesto por Shephard Pitt [30] para calcular la
función verosimilitud ordinaria dado los parámetros log f(Y n | θ).

Para escoger el mejor orden VAR-MSV se aplican los siguientes pasos:
1. Suponiendo que se sabe que el orden VAR-MSV no puede exceder un entero
K1, se procede a estimar los modelos VAR-MSV comenzando desde 0 hasta
K1 y se almacenan sus parámetros estimados θ0, θ1, . . . , θK1 , donde θi son
los parámetros estimados del modelo i.

2. Para cada modelo se sustituye yt por y∗t = yt − (Y >t ⊗ Ip)β̂i, donde β̂i son
las matrices de coeficientes estimadas del modelo i. Luego se procede a cal-
cular la correspondiente función verosimilitud ordinaria dado los parámetros
log f(Y n | θi).

3. Se escoge el modelo que tenga la menor medida DIC.
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4.4 Modelo de Volatilidad Estocastica Matriz Exponencial con Apalanca-
miento Cruzado

En esta sección se describe el modelo de Volatilidad estocastica matriz exponen-
cial con efecto de apalancamiento cruzado (MESV) propuesto por Ishihara, Omori
y Asai [3]. El modelo MESV se basa en la transformación exponencial matricial
como se describe a continuación.

Sea A una matriz de dimensión p × p, la exponencial de una matriz se define
mediante el siguiente desarrollo en serie de potencias

exp(A) ≡
∞∑

s=0

1
s!A

s,

donde la serie converge absolutamente si todos los autovalores de A son finitos. Pa-
ra cualquier matriz simétrica real definida positiva C ,existe una matriz simétrica
real A de dimensión p× p tal que C = exp(A), y la matriz A se obtiene mediante
la transformación logarítmica matricial. De forma recíproca, para cualquier matriz
simétrica real A, C = exp(A) es una matriz simétrica definida positiva.

Si A es una matriz simétrica real de dimensión p×p, entonces existe una matriz
ortogonal U de dimensión p × p y una matriz diagonal Λ de dimensión p × p tal
que A = UΛU′ y

exp(A) = U
( ∞∑

s=0

1
s!Λ

s

)
U′ = U exp(Λ)U′.

Sea yt = (y1t, . . . , ypt)′ denotando el vector de retornos de activos de dimención
p×1 en el tiempo t, y sea Ht denotando el logaritmo matricial de la matriz varianza-
covarianza de yt. El modelo MESV con efecto de apalancamiento se define como

yt = exp(Ht/2) εt, εt ∼ i.i.d. N (0, Ip), t = 1, . . . , n,(4.17)

Ht+1 = M + Φ̃� (Ht −M) + Et,(4.18)
(
εt
ηt

)
∼ i.i.d. Np+q(0,Σ), Σ =

(
Ip Σεη

Σηε Σηη

)
, t = 1, . . . , n− 1,(4.19)

h1 ∼ Nq(µ,Σ0),(4.20)

donde ηt = vech(Et), q = p(p + 1)/2, M = {µij} y Φ̃ = {φij} son matrices
simétricas p × p de parámetros, y � denota el producto de Hadamard. Para la
identificabilidad, fijamos la matriz de covarianza de εt igual a Ip.

Si definimos ht = vech(Ht) = (h11,t, h21,t, . . . , hp1,t, h22,t, . . . , hpp,t)′ como el
vector columna apilado de los elementos de la parte triangular inferior de Ht,
entonces se tiene que

ht+1 = µ+ Φ(ht − µ) + ηt,(4.21)

donde µ = vech(M) = (µ11, µ21, . . . , µp1, µ22, . . . , µpp)′, Φ = diag(φ) (una
matriz diagonal cuyos elementos diagonales son iguales a φ) y φ = vech(Φ̃) =
(φ11, φ21, . . . , φp1, φ22, . . . , φpp)′.El número de parámetros en el modelo MESV es
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q(q+ 2p+ 3)/2. La matriz de covarianza de la variable latente inicial, Σ0, se asume
que satisface una condición de estacionariedad tal que

vec(Σ0) = (Ip2 −Φ⊗Φ)−1vec(Ση)(4.22)

. donde ⊗ es el producto kronecker.

Sea Σηη = {ρij,ηη σi,ηησj,ηη}, y Σεη = {ρij,εη σj,ηη} donde σi,ηη es la desviación
estándar de ηit y ρij,xy es el coeficiente de correlación entre xit y yjt. Además,
para mayor comodidad, utilizamos la notación E(i, j) = k basada en la relación
ηt = vech(Et), de modo que el elemento (i, j)-ésimo de Et, Et(i, j), corresponde
al elemento k-ésimo de ηt, ηkt., es decir, E(1, 1) = 1, E(2, 1) = 2, . . . , E(p, 1) =
p, E(2, 2) = p + 1, . . . , E(p, p) = p(p + 1)/2. Así, Cov(εlt, ηkt) = ρlk,εη σk,η, es
equivalente a Cov(εlt,Et(i, j)) = ρl E(i,j),εη σE(i,j),η.

4.5 Modelo VAR-MESV
En esta sección se presenta el modelo autorregesivo vectorial integrado con vola-

tilidad estocástica matriz exponencial con efecto de apalancamiento cruzado (VAR-
MESV). La volatilidad estocástica matriz exponencial es la propuesta por Ishihara,
Omori y Asai [3], la cual se describió en la subsección 4.4.

yt = ν +
k∑

i=1
Aiyt−i + wt, wt = exp(Ht/2) εt, t = 1, . . . , n,(4.23)

Ht+1 = M + Φ̃� (Ht −M) + Et,(4.24)
(
εt
ηt

)
∼ i.i.d. Np+q(0,Σ), Σ =

(
Ip Σεη

Σηε Σηη

)
, t = 1, . . . , n− 1,(4.25)

h1 ∼ Nq(µ,Σ0),(4.26)
vec(Σ0) = (Ip2 −Φ⊗Φ)−1vec(Ση)(4.27)

4.6 Correlación Dinámica en Modelos Multivariados de Matriz Exponen-
cial

En los modelos de volatilidad estocástica multivariada, la correlación dinámica
se refiere a la evolución temporal de la dependencia entre los choques estructurales
de un sistema multivariado. En el caso particular del modelo Matrix Exponential
Stochastic Volatility (MESV), esta correlación surge directamente de la dinámica
estocástica del logaritmo matricial Ht, el cual genera una matriz de covarianzas
definida positiva en cada instante mediante la transformación exponencial:

Σt = exp(Ht).

Dado que Ht evoluciona según un proceso estocástico matricial,

Ht+1 = M + Φ̃� (Ht −M) + Et,

la matriz Σt cambia continuamente en el tiempo, lo cual induce de forma natural
una correlación que también varía dinámicamente. La correlación entre las series i

101



y j en el tiempo t se define como:

ρij,t = σij,t√
σii,t σjj,t

.

Por lo tanto, cualquier perturbación en la evolución de Ht —ya sea en su media, su
persistencia o en los choques Et— produce cambios simultáneos en las covarianzas
y, en consecuencia, en las correlaciones.

Este mecanismo presenta varias ventajas metodológicas: (i) garantiza la positi-
vidad definida de Σt mediante la exponencial matricial; (ii) permite correlaciones
completamente dinámicas sin imponer formas funcionales restrictivas; (iii) captu-
ra efectos de apalancamiento cruzado a través de la submatriz Σεη, induciendo
dependencia entre los choques contemporáneos y los de volatilidad futura; y (iv)
representa adecuadamente fenómenos financieros como contagio, sincronización en
crisis y divergencia en periodos estables.

En síntesis, en los modelos multivariados de matriz exponencial, la correlación
dinámica no se especifica como un proceso separado, sino que emerge endógenamen-
te de la evolución estocástica del logaritmo matricial Ht. Este enfoque es uno de los
más flexibles y matemáticamente consistentes para modelar dependencia temporal
en econometría financiera, y constituye la base teórica de modelos avanzados como
el VAR–MESV.

4.7 Apalancamiento y Apalancamiento Cruzado.
El apalancamiento en modelos financieros describe el efecto mediante el cual los

choques contemporáneos de una variable, especialmente los negativos, incrementan
de forma desproporcionada su volatilidad futura. Este fenómeno surge típicamente
a partir de una correlación negativa entre las innovaciones del retorno y las innova-
ciones del proceso de volatilidad, generando un aumento inmediato del riesgo ante
movimientos adversos.

En el contexto multivariado, este mecanismo se extiende mediante el denominado
apalancamiento cruzado, que caracteriza la interacción entre los choques contempo-
ráneos de una variable y la volatilidad futura de otra diferente. Bajo esta estructura,
un shock en la serie i puede modificar la evolución del proceso de volatilidad de
la serie j, capturando efectos de transmisión, interdependencia y contagio entre
activos o países. Este tipo de dependencia es fundamental en los modelos de vola-
tilidad estocástica multivariada, pues permite representar de manera realista cómo
perturbaciones en un mercado pueden influir en el nivel de incertidumbre de otros.

4.8 Trabajo futuro y consideraciones computacionales.
En el trabajo futuro se continuará profundizando en la aplicación del modelo a

las series de tasas de cambio de los países de interés, así como en la realización de
estudios de simulación que permitan evaluar el comportamiento del VAR–MESV
bajo diferentes escenarios de volatilidad y dependencia dinámica. Sin embargo, es
necesario señalar que este tipo de modelos posee una estructura altamente comple-
ja, debido a la presencia de variables latentes, a la evolución matricial del proceso
de volatilidad y a la necesidad de garantizar positividad definida mediante trans-
formaciones exponenciales. Como resultado, el costo computacional asociado a su
estimación es elevado, en particular cuando se utilizan métodos bayesianos basados
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en algoritmos MCMC y cuando la dimensión del sistema aumenta. A pesar de estas
exigencias computacionales, la riqueza estructural del modelo justifica el esfuerzo,
ya que permite capturar de manera más realista la dinámica conjunta de las tasas
de cambio y los mecanismos de transmisión entre economías interrelacionadas.

Conclusiones

A partir del análisis realizado, se concluye que la integración entre un modelo
autorregresivo vectorial y un modelo de volatilidad estocástica matriz exponencial
(VAR–MESV) constituye una estrategia metodológica robusta para estudiar la di-
námica conjunta de variables financieras altamente interdependientes. Se evidencia
que esta integración permite capturar no solo las dependencias temporales entre las
series, sino también la evolución estocástica y flexible de sus covarianzas, aspecto
fundamental en contextos donde las correlaciones cambian de forma significativa a
lo largo del tiempo.

Se determina que los modelos VAR–MSV tradicionales presentan una limita-
ción importante al asumir correlaciones constantes. A la luz de la teoría revisada,
se reconoce que esta simplificación puede generar conclusiones sesgadas cuando se
analizan fenómenos como los tipos de cambio, caracterizados por episodios de con-
tagio, alta volatilidad y variaciones estructurales. En contraste, el modelo MESV,
basado en la transformación exponencial matricial, confirma ser una alternativa
más adecuada al garantizar positividad definida y permitir que las correlaciones
evolucionen de manera coherente con los choques económicos.

Desde el punto de vista metodológico, se destaca el papel central de la inferen-
cia bayesiana y del uso de algoritmos MCMC para la estimación del modelo, dado
que permiten trabajar con variables latentes y estructuras altamente no lineales.
De igual forma, se resalta la utilidad del criterio DIC como herramienta para la
selección del orden óptimo del modelo, equilibrando adecuadamente la complejidad
y la capacidad de ajuste.

Se proyecta que el trabajo futuro se orientará en tres direcciones principales.
Primero, se plantea realizar simulaciones que permitan evaluar el comportamiento
del VAR–MESV bajo distintos escenarios de correlación dinámica y apalancamiento
cruzado. Segundo, se prevé aplicar el modelo a los tipos de cambio de los países de
la Alianza del Pacífico, con el fin de identificar patrones de comovimiento, episodios
de contagio y posibles quiebres estructurales antes y después de 2011. Tercero, se
propone incorporar medidas adicionales como la asimetría de Mardia y la curtosis
de Koziol, lo cual permitirá caracterizar con mayor precisión la distribución de los
choques y evaluar la presencia de colas pesadas.

En síntesis, se confirma que el modelo VAR–MESV constituye una herramienta
analítica avanzada y adecuada para estudiar fenómenos financieros complejos. La
flexibilidad de su estructura, la capacidad para capturar correlaciones dinámicas y
su fundamento bayesiano lo posicionan como un modelo idóneo para continuar la
investigación, tanto a nivel teórico como aplicado, dentro del estudio de la dinámica
cambiaria multivariada.
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Regresión Logística Robusta Basada en M-Estimadores
Fundamentos Teóricos y Aplicaciones Prácticas

MAURICIO ARTURO MARTÍNEZ BACA

Resumen. En esta investigación se propone un modelo de regresión logística
robusto que emplea M-estimadores para reducir la influencia de valores atí-
picos. La regresión logística es adecuada para problemas de clasificación con
variables respuesta binarias, y su distribución presenta colas más pesadas que
permiten manejar observaciones extremas.

El objetivo es obtener estimaciones precisas sin eliminar outliers, superan-
do la sensibilidad de los métodos clásicos como la máxima verosimilitud. Se
consideran dos M-estimadores: el de Huber y el de Bianco–Yohai, con el fin
de mejorar la robustez y capturar la estructura de los datos de manera más
adecuada.

El desempeño del modelo se evaluará mediante simulaciones, incluyendo
escenarios con contaminación de datos, destacando su capacidad para identi-
ficar patrones relevantes sin perder información valiosa por la eliminación de
valores extremos.

Resumen. This research proposes a robust logistic regression model using M-
estimators to reduce the influence of outliers. Logistic regression is suitable for
classification problems with binary response variables, and its distribution has
heavier tails, allowing it to handle extreme observations.

The goal is to obtain accurate estimates without removing outliers, over-
coming the sensitivity of classical methods such as maximum likelihood. Two
M-estimators are considered: the Huber estimator and the Bianco–Yohai esti-
mator, aiming to improve robustness and better capture the data structure.

The model’s performance will be evaluated through simulations, including
scenarios with data contamination, highlighting its ability to identify relevant
patterns without losing valuable information due to extreme observations.

1. Introducción

La Estadística Robusta surge como una respuesta a las limitaciones de los méto-
dos clásicos de análisis de datos frente a la presencia de valores atípicos o entornos
con datos contaminados. Su propósito principal es ofrecer herramientas que per-
mitan tratar de manera adecuada las características de los datos reales, donde las
observaciones extremas no pueden ser simplemente ignoradas o eliminadas. En la
actualidad, el análisis de datos constituye una herramienta esencial para la toma
de decisiones y el desarrollo de investigaciones en áreas tan diversas como la bio-
logía, la medicina, la ingeniería, entre otras, donde la calidad y confiabilidad de la
información resultan fundamentales.

Date: Octubre 2025.
Key words and phrases. regresión Logística, M-estimadores, estimación paramétrica,outliers,

robustez.
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Dentro de este contexto, los Modelos Lineales Generalizados (MLG) [6] se han
consolidado como una metodología ampliamente utilizada para modelar relaciones
entre variables en diferentes campos del conocimiento. Sin embargo, su desempeño
puede verse afectado cuando los datos presentan valores atípicos. El objetivo de
este artículo es integrar las características de un caso específico de los MLG con
técnicas robustas, con el fin de desarrollar un modelo que incorpore la fortaleza de
los M-estimadores como una función de pérdida como la que propuso Huber (1964)
o los basados en estimadores redescendientes derivados del trabajo de Bianco y
Yohai (1996). Para lograrlo, se propone la construcción de una regresión logística
robusta, basada en dichos estimadores, que permita obtener inferencias más estables
y precisas ante la presencia de datos anómalos.

El problema de los datos atípicos (outliers) representa un desafío recurrente en
el análisis estadístico. Su presencia genera interrogantes sobre su tratamiento: algu-
nos investigadores optan por eliminarlos, otros no logran detectarlos, o simplemente
deciden ignorarlos. No obstante, en los conjuntos de datos reales es común encon-
trar observaciones que difieren significativamente del resto. Estas pueden deberse a
errores de medición, condiciones experimentales excepcionales o incluso pertenecer
a otra población [8]. En cualquier caso, su existencia puede distorsionar las esti-
maciones y deteriorar el ajuste del modelo, por lo que resulta de vital importancia
contar con procedimientos robustos que garanticen resultados confiables y modelos
capaces de adaptarse adecuadamente a este tipo de datos.

2. Justificación

Como finalidad principal de la Maestría en Matemática con Orientación en Es-
tadística de la Universidad Nacional Autónoma de Honduras (UNAH), se establece
que sus egresados deben ser capaces de analizar y resolver problemas presentes en
las ciencias, contribuyendo al desarrollo del país mediante la aplicación rigurosa
de herramientas estadísticas. Este propósito se alinea con los ejes primordiales de
investigación de la UNAH, que promueven la generación de conocimiento útil para
la toma de decisiones y la mejora de las condiciones de vida de la población.

En este sentido, el presente trabajo se enmarca dentro del eje de investigación
“Población y condiciones de vida”, específicamente en el tema “Cultura, ciencia
y educación”, contribuyendo al fortalecimiento de la investigación científica y la
formación académica en el ámbito estadístico. Asimismo, dentro de las líneas de
investigación de la Maestría, este estudio se ubica en la línea de Estadística mul-
tivariada y modelos lineales generalizados [7], al abordar el desarrollo y aplicación
de técnicas robustas para el análisis de datos.

El análisis, detección y tratamiento de valores atípicos constituye una proble-
mática relevante en el contexto nacional, ya que los datos obtenidos en distintas
áreas como la ingeniería, la medicina, las ciencias sociales, la biología, la economía,
entre otras suelen estar expuestos a errores de medición, registros irregulares o con-
diciones experimentales variables. Desarrollar modelos estadísticos que se adapten
adecuadamente a estas características permite mejorar la calidad de las inferencias,
optimizar la toma de decisiones y fortalecer la capacidad de respuesta en proyec-
tos de investigación aplicada, lo que representa un aporte directo a la solución de
problemas reales del país.

Los métodos clásicos para la estimación de parámetros, como el método de má-
xima verosimilitud o el método de los momentos, han demostrado ser eficientes
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bajo condiciones ideales. En particular, el método de máxima verosimilitud es asin-
tóticamente óptimo, consistente y presenta una tasa de convergencia mínima. No
obstante, estos métodos suelen fallar cuando los datos presentan observaciones atí-
picas, ya que dichas condiciones rompen los supuestos de los modelos tradicionales.
Ante esta limitación, los métodos robustos surgen como una alternativa necesaria,
capaces de capturar las verdaderas características de los datos y adaptarse ade-
cuadamente a la presencia de valores extremos. La incorporación de estas técnicas
constituye, por tanto, un avance significativo en la búsqueda de modelos estadísticos
más confiables y aplicables a las condiciones reales que enfrenta el país.

3. Antecedentes

El estudio de la estadística robusta surge de la necesidad de métodos estadísticos
que no solo sean efectivos, sino también confiables frente a la presencia de valores
atípicos, los cuales pueden afectar significativamente los resultados al analizar datos.
Desde sus inicios, esta disciplina ha buscado desarrollar herramientas que permitan
obtener inferencias más estables y resistentes a desviaciones de los supuestos del
modelo.

Los primeros desarrollos importantes se centraron en los M-estimadores, in-
troducidos por Hampel (1974) [1], que establecieron la base teórica para esti-
maciones resistentes a valores extremos. Posteriormente, Künsch, Stefanski y Ca-
rroll (1989)[2] propusieron los estimadores condicionalmente insesgados de influen-
cia acotada, también basados en M-estimadores y denominados condicionalmente
Fisher-consistentes, aplicables a Modelos Lineales Generalizados (MLG). Estos es-
timadores se obtienen como soluciones de problemas de optimización, similares a
los planteados por Hampel.

En los años siguientes, se desarrollaron nuevas estrategias de estimación robusta
para MLG. Maronna y Yohai (1993) [3] introdujeron los estimadores de proyección,
que fueron aplicados posteriormente por Bergesio y Yohai (2001). Este enfoque in-
cluyó la implementación de estimadores basados en la transformación integral de
probabilidad (MI-estimadores), permitiendo construir modelos de regresión robus-
tos, como la regresión beta, capaces de manejar datos contaminados o con valores
atípicos.

Más recientemente, Abhik Ghosh [5] implementó métodos de inferencia robusta
mediante estimadores robustos de divergencia mínima de potencia de densidad.
Esta metodología demostró ventajas significativas frente a los métodos clásicos,
como la estimación por máxima verosimilitud, especialmente en situaciones con
valores atípicos o entornos de contaminación de datos.

Finalmente, Valdora (2014)[6] consolidó los avances de la estadística robusta
aplicándolos a modelos lineales generalizados, incluyendo regresión de Poisson, re-
gresión exponencial y regresión binomial. Su trabajo integró enfoques como M-
estimadores, cuasiestimadores robustos y estimadores condicionalmente insesgados
de influencia acotada, representando uno de los aportes más recientes y completos
al desarrollo teórico de esta disciplina.

En conjunto, estos trabajos reflejan la evolución de la estadística robusta, des-
de sus fundamentos teóricos hasta las aplicaciones modernas en modelos lineales
generalizados, mostrando cómo los métodos robustos han permitido realizar infe-
rencias más confiables frente a la presencia de valores atípicos y entornos de datos
complejos.

108



4. Marco Teórico

4.1. Distribución Logística. Dada una variable aleatoria X que sigue una dis-
tribución logística con parámetros α y β, su función de distribución acumulada
(FDA) se define como:

(4.1) F (x;α, β) = 1
1 + e−

x−α
β

=
(

1 + e−
x−α
β

)−1
,

donde α es el parámetro de locación y β el parámetro de escala.

Función de densidad. Derivando la FDA obtenemos la función de densidad de
probabilidad:

(4.2) f(x;α, β) = e−
x−α
β

β
(

1 + e−
x−α
β

)2 .

Algunas de las propiedades clave de la distribución logística son:
Media: La media de la distribución logística es igual a α.
Varianza: La varianza es π2β2

3 .
Simetría: La distribución logística es simétrica respecto a α.
Curtosis: La curtosis es 6. ⇒ Es más "pesada"que una distribución normal.

4.2. Estimadores clásicos y sus limitaciones. En esta sección se estudiarán
las características de los estimadores. Inicialmente, se analizarán algunos estimado-
res puntuales, como la media y la desviación estándar. Posteriormente, se abordarán
métodos más generales de estimación, como el método de los momentos y el método
de máxima verosimilitud. Se hará énfasis en que estos métodos pueden presentar
debilidades frente a la presencia de valores atípicos o en escenarios con datos con-
taminados.

4.2.1. Media y desviación estándar. Definición: Sea x = (x1, x2, . . . , xn) un con-
junto de valores observados. La media muestral x̄ y la desviación estándar
muestral s se definen como:

(4.3) x̄ = 1
n

n∑

i=1
xi

(4.4) s =

√√√√ 1
n− 1

n∑

i=1
(xi − x̄)2

4.2.2. Estimación por método de los momentos. El método de los momentos es
un método de estimación puntual, al igual que los estimadores mencionados ante-
riormente. Para encontrar los estimadores usando este método se emplean el primer
y el segundo momento.
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(4.5) 1
n

n∑

i=1
xi = E[X]

(4.6) 1
n

n∑

i=1
x2
i = E[X2]

De la ecuación (4.5) se obtiene:

(4.7) x̄ = E[X], y dado que E[X] = α, entonces α̂ = x̄

Para la estimación de β, consideramos la varianza de la variable aleatoria X:

(4.8) Var(X) = E[X2]− (E[X])2 = π2β2

3
De la ecuación (4.8) se despeja E[X2]:

(4.9) E[X2] = π2β2

3 + α2 = π2β2

3 + x̄2

Finalmente, se obtiene el estimador de β:

(4.10) β̂ =

√√√√ 3
nπ2

n∑

i=1
x2
i −

3x̄2

π2

4.2.3. Estimación por máxima verosimilitud. La función de densidad de la distri-
bución logística es:

(4.11) f(x;α, β) = e−
x−α
β

β
(

1 + e−
x−α
β

)2

Si tomamos una muestra aleatoria de tamaño n, con observaciones x1, x2, . . . , xn
que siguen una distribución logística, la **función de verosimilitud** se expresa
como:

(4.12) L(α, β;X) =
n∏

i=1

e−
xi−α
β

β
(

1 + e−
xi−α
β

)2

El logaritmo de la función de verosimilitud es:

(4.13) logL(α, β;X) = −n log β +
n∑

i=1

(
−xi − α

β
− 2 log

(
1 + e−

xi−α
β

))

Para obtener los estimadores de máxima verosimilitud, se derivan parcialmente
respecto a α y β y se igualan a cero:
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(4.14) ∂ logL(α, β;X)
∂α

=
n∑

i=1

(
1
β

+ 2e−
xi−α
β

1 + e−
xi−α
β

)
= 0

(4.15) ∂ logL(α, β;X)
∂β

= −n
β

+ 1
β2

n∑

i=1

(
(xi − α)

[
1− 2e−

xi−α
β

1 + e−
xi−α
β

])
= 0

Notemos que al intentar despejar α y β a partir de las ecuaciones (4.14) y (4.15),
se vuelve complejo resolverlas de forma analítica. Por esta razón, se recomienda
utilizar métodos numéricos para estimar los parámetros.

En particular, se puede aplicar el método de Newton-Raphson, implementado
con la ayuda del lenguaje de programación R, un entorno de software libre para
análisis estadístico y visualización de datos.

4.3. Estadística robusta. La estadística robusta se utiliza para analizar datos
que pueden verse afectados por errores de medición o por entradas incorrectas, así
como por situaciones en las que los datos no cumplen con los supuestos clásicos
del análisis estadístico, como la normalidad. Estos errores se manifiestan a menudo
como observaciones que se encuentran alejadas del resto de los datos, denominadas
valores atípicos o outliers. Sin embargo, estas observaciones pueden ser mediciones
válidas que contienen información relevante, por lo que resulta necesario emplear
métodos y modelos estadísticos capaces de capturar adecuadamente estas caracte-
rísticas sin verse fuertemente afectados por valores extremos. Para medir que tan
lejos está una observación utilizando las variables explicadas con valores muy ex-
tremos o inuales, influyen Drásticamente en las estimaciones de los coeficientes,
notando un gran impacto visual en la curva hacia ese punto.

4.4. Entorno de Contaminación. Según [10] si se considera la muestra

(4.16) xi = µ+ ui, i = 1, 2, . . . , n,
donde los errores u1, u2, . . . , un son variables aleatorias que cumplen las siguien-

tes condiciones:
Tienen una función de distribución F0.
Son independientes.

Si se tienen X = {x1, x2, . . . , xn} como variables independientes e idénticamente
distribuidas (iid) con distribución

(4.17) F (x) = F0(x− µ),
entonces la distribución de ui y −ui es la misma, lo que implica que:

(4.18) F0(x) = 1− F0(−x).
Una forma de representar datos que se comportan normalmente es asumir que

(4.19) F = D(xi) = N(µ, σ2),
donde D(xi) denota la distribución de la variable aleatoria X.
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La idea formal del entorno de contaminación considera que una proporción 1− ε
de los datos se comporta según la distribución esperada, mientras que una propor-
ción ε de los datos se genera mediante un mecanismo desconocido. Esto se puede
representar como:

(4.20) F = (1− ε)G+ εH,

donde G = N(µ, σ2) representa la distribución principal y H es alguna distribu-
ción desconocida.

Estas características se pueden trasladar a cualquier otra distribución G distinta
de la normal.

Definition 4.1. Definición 3.1. La tasa asintótica de contaminación (asymptotic
contamination breakdown point) del estimador θ̂ en F , denotada por ε∗(θ̂, F ), es el
mayor valor ε∗ ∈ (0, 1) tal que, para toda ε < ε∗, el valor límite θ̂∞((1− ε)F + εG)
permanece acotado y alejado de la frontera de Θ para toda distribución G.

De manera intuitiva se considera el punto de ruptura como la proporción de
contaminación que un estimador puede soportar antes de que sus valores sean ex-
tremadamente malos.

4.5. Estimadores M y funciones de pérdida. Consideremos nuevamente el
modelo
(4.21) xi = µ+ ui, i = 1, 2, . . . , n,
Supongamos que F0, la función de distribución de ui, tiene una densidad f0 = F ′0.
La densidad conjunta de las observaciones (la función de verosimilitud) es

(4.22) L(x1, . . . , xn;µ) =
n∏

i=1
f0(xi − µ)

El estimador de máxima verosimilitud (MLE) de µ es el valor µ̂, que depende de
x1, . . . , xn, que maximiza L(x1, . . . , xn;µ):

(4.23) µ̂ = µ̂(x1, . . . , xn) = arg máx
µ

L(x1, . . . , xn;µ)

donde “argmax” significa el valor que maximiza la función.

Si conociéramos F0 exactamente, el MLE sería “óptimo” en el sentido de al-
canzar la varianza asintótica más baja posible dentro de una clase “razonable” de
estimadores. Pero como solo conocemos F0 aproximadamente, nuestro objetivo será
encontrar estimadores que sean “casi óptimos” para las siguientes situaciones:
(A) cuando F0 es exactamente normal
(B) cuando F0 es aproximadamente normal (por ejemplo, normal contaminada)
Si f0 es positiva en todo punto y dado que el logaritmo es una función creciente,

(4.22) se puede reescribir como

(4.24) µ̂ = arg mı́n
µ

n∑

i=1
ρ(xi − µ)
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donde

(4.25) ρ = − log f0

Si ρ es diferenciable, derivando (4.25) con respecto a µ se obtiene

(4.26)
n∑

i=1
ψ(xi − µ̂) = 0

donde ψ = ρ′.

Si ψ es discontinua, las soluciones de la ecuación (4.26) podrían no existir. En
este caso, interpretaremos la ecuación como que el lado izquierdo cambia de signo
en µ. Obsérvese que si f0 es simétrica, entonces ρ es par y, por lo tanto, ψ es impar.

Un M-estimador introducidos por Hampel (1974) [1] minimiza una función de
pérdida ρ(ri), para i = 1, 2, ..., n. donde ri = xi − µ son los residuos, luego

(4.27) µ̂ = arg mı́n
µ

n∑

i=1
ρ(ri)

La función de influencia se relaciona con ψ(ri) = ρ′(ri).
Se observa en 1 algunas funciones de pérdida consideradas en el estudio de esti-

madores en la teoría de estimadores robustos, luego se muestra en 2 una relación
entre las funciones ρ y ψ con propiedades importantes como la familia de funcio-
nes de Huber. Además, cuando ψ en (4.26) no es monótona se llamarán funciones
redescendientes. Por lo que un M-estimador que utiliza una función redescendiente,
se le conoce como M-estimador redescendiente.

(4.28) ρk(x) =
{
x2 si |x| ≤ k,
2k|x| − k2 si |x| > k,

con derivada

(4.29) ψk(x) =
{
x si |x| ≤ k,
k sgn(x) si |x| > k,

donde la función signo se define como

(4.30) sgn(x) =





1 x > 0,
0 x = 0,
−1 x < 0.

Huber: lineal para residuos pequeños y constante para grandes.
Más adelante se comentará sobre las ventajas de usar una función ρ acotada.
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Figura 1. Algunas Funciones de pérdida utilizadas

Figura 2. Funciones ρ y ψ de Huber.

Una elección popular de funciones ρ y ψ es la familia bisquare (también llamada
biweight):

(4.31) ρ(x) =





1−
[
1−

(x
k

)2
]3
, si |x| ≤ k,

1, si |x| > k.

Su derivada viene dada por:

(4.32) ρ′(x) = 6
k2 ψ(x),
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donde

(4.33) ψ(x) = x

[
1−

(x
k

)2
]2

I(|x| ≤ k),

y I(·) es la función indicadora.
Tukey Biweight: redescendente, ψ(r)→ 0 para |r| > c.

Definición: Salvo que se indique lo contrario, una función ρ denotará una función
ρ que cumple:

1. ρ(x) es una función no decreciente de |x|.
2. ρ(0) = 0.
3. ρ(x) es creciente para x > 0 y satisface ρ(x) < ρ(∞).
4. Si ρ está acotada, también se asume que ρ(∞) = 1.

Definición: Una función ψ denotará una función ψ que es la derivada de una
función ρ, lo cual implica en particular que, ψ es una función impar y se cumple
ψ(x) ≥ 0 para todo x ≥ 0.

5. Métodos Robustos en Regresión

5.1. Regresión logística robusta. Según [10] estamos interesados en una y
binaria (0–1) que puede representar por ejemplo la muerte o la supervivencia de
un paciente después de una cirugía cardiaca. Aquí y = 1 representa muerte y y =
0 representa supervivencia. Queremos predecir este resultado utilizando distintos
regresores, tales como x1 = edad, x2 = presión diastólica, etc.

Observamos los pares (x, y) donde x = (x1, . . . , xp)′ es el vector de variables
explicativas. Supondremos primero que x es fijo (no aleatorio). Para modelar la
dependencia de y respecto de x, asumimos que P (y = 1) depende de β′x para
algún vector desconocido β ∈ Rp. Como P (y = 1) ∈ [0, 1] y β′x puede tomar
cualquier valor real, hacemos la siguiente suposición adicional:

(5.1) P (y = 1) = F (β′x),

donde F es una función de distribución continua. La función F−1 se denomina
función de enlace. Si en cambio x es aleatorio, se asume que las probabilidades son
condicionales; es decir,

(5.2) P (y = 1 | x) = F (β′x).

En el caso común de un modelo con intercepto, la primera coordenada de cada
xi es uno, y la predicción puede escribirse como:

(5.3) β′xi = β0 + xiβ1,

donde xi y β1 son como en (4.6).
Las funciones F más populares son aquellas correspondientes a la distribución

logística

(5.4) F (y) = ey

1 + ey
,

115



(modelo logístico), y a la distribución normal estándar F (y) = Φ(y) (modelo
probit). Para el modelo logístico tenemos:

(5.5) log
(

P (y = 1)
1− P (y = 1)

)
= β′x.

El lado izquierdo es llamado log-odds (logaritmo de la razón de chances), y es
una función lineal de x.

Sea ahora (x1, y1), . . . , (xn, yn) una muestra del modelo (5.1), donde x1, . . . , xn
son fijos. Para simplificar la notación escribimos:

(5.6) pi(β) = F (β′xi).
Entonces, y1, . . . , yn son variables aleatorias que toman valores 1 y 0 con proba-

bilidades pi(β) y 1−pi(β), respectivamente, y por tanto su función de probabilidad
está dada por:

(5.7) p(yi, β) = [pi(β)] yi [1− pi(β)] 1−yi .

De esta manera, la log-verosimilitud de la muestra L(β) viene dada por:

(5.8) logL(β) =
n∑

i=1

[
yi log pi(β) + (1− yi) log(1− pi(β))

]
.

Derivando (5.8) se obtienen las ecuaciones de estimación del estimador de máxi-
ma verosimilitud (MLE):

(5.9)
n∑

i=1

yi − pi(β)
pi(β) (1− pi(β))F

′(β′xi)xi = 0.

En el caso de xi aleatorios, el modelo condicional (5.2) produce la log-verosimilitud:

(5.10) logL(β) =
n∑

i=1

[
yi log pi(β) + (1− yi) log(1− pi(β))

]
+

n∑

i=1
log g(xi),

donde g(xi) es la densidad de los regresores.

Separación perfecta y no existencia del MLE

Consideremos el modelo de regresión logística donde
pi(β) = P (yi = 1 | xi) = F (β′xi),

y deseamos estimar β por máxima verosimilitud. El problema aparece cuando los
datos son perfectamente separables.

Se dice que hay separación perfecta si existen γ ∈ Rp y α ∈ R tales que:
γ′xi > α si yi = 1,

γ′xi < α si yi = 0.
Esto implica la existencia de un hiperplano que separa completamente a los

casos con y = 1 de los casos con y = 0. Si existe un hiperplano separador, existen
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infinitos, ya que cualquier múltiplo escalar de γ también separa. Por ello se considera
la secuencia:

β(k) = kγ, k → +∞.
Por lo que podemos notar que no podemos encontrar un valor finito para el esti-
mador.

El estimador robusto tipo Huber en regresión logística se define como sigue

(5.11) di(β) = −
[
yi log pi(β) + (1− yi) log

(
1− pi(β)

)]
,

Luego, el estimador Huber se obtiene minimizando la suma de la función de
Huber aplicada a los deviances:

(5.12) β̂ = arg mı́n
β

n∑

i=1
ρ
(
di(β)

)
,

con la función de Huber ρ definida en (4.28)

Carroll y Pederson (1993) propusieron una forma de convertir el MLE en un
estimador con influencia acotada, reduciendo el peso de observaciones con alto
leverage.

Leverage de una observación x:

(5.13) hn(x) =
√

(x− µ̂n)′Σ̂−1
n (x− µ̂n),

con µ̂n y Σ̂n robustos e invariantes bajo transformaciones afines.
Estimadores robustos:

(5.14)
n∑

i=1
wi
[
yi log pi(β) + (1− yi) log(1− pi(β))

]
.

Pregibon (1981) propuso estimadores M-robustos para el modelo logístico basados
en minimizar:

(5.15) M(β) =
n∑

i=1
ρ
(
d2(pi(β), yi)

)
,

donde ρ(u) es una función que crece más lentamente que la función identidad,
reduciendo así la influencia de observaciones discordantes.

Bianco y Yohai (1996) observaron que para xi aleatorios estos estimadores no
son Fisher-consistent

Para corregir esto propusieron estimar β minimizando:

(5.16) M(β) =
n∑

i=1

[
ρ
(
d2(pi(β), yi)

)
+ q
(
pi(β)

)]
,

donde ρ(u) es no decreciente y acotada.
La función correctiva es:

(5.17) q(u) = v(u) + v(1− u),
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con

(5.18) v(u) = 2
∫ u

0
ψ(−2 log t) dt,

y

(5.19) ψ = ρ′

donde d(u, y) definido por

(5.20) d(u, y) = {−2 [y log(u) + (1− y) log(1− u)]}1/2 sgn(y − u).

Esta expresión es una medida con signo de la discrepancia entre una variable
Bernoulli y y su valor esperado u. Observe que

(5.21) d(u, y) =





0, si u = y,

−∞, si u = 1, y = 0,

∞, si u = 0, y = 1.

En el modelo logístico, los valores d(pi(β), yi) se denominan residuos de desvian-
cia, y miden las discrepancias entre las probabilidades ajustadas por los coeficientes
de regresión β y los valores observados.

6. Metodología

En este estudio se trabaja en el contexto de regresión logística robusta con
el objetivo de comparar el desempeño de estimadores clásicos frente a estimadores
robustos. La metodología seguida se describe a continuación:

6.1. Ejemplo Ilustrativo. Se considera un conjunto de 20 datos del contenido
de hierro en agua (ppm) para observar el efecto de un solo outlier con relación a
los estimadores puntuales como ser la media y a la desviación estándar.

6.2. Simulación de datos. Se generaron datos simulados con un tamaño de
muestra n = 100 utilizando el lenguaje de programación R. Los predictores x se
obtuvieron de una distribución normal estándar N(0, 1). La variable respuesta y se
simuló mediante una distribución Bernoulli con probabilidad

P (y = 1 | x) = plogis(2x),

lo que corresponde a un modelo logístico con α = 0 y β = 2.

6.3. Entorno de contaminación y generación de outliers. Se introdujeron
valores atípicos para evaluar la robustez de los estimadores, usando un entorno
de contaminación con ε = 0,1. Se seleccionaron observaciones específicas del
predictor x0 = (−3, 3) y se duplicaron ciertos valores de y para generar outliers
controlados; en particular, se tomaron dos valores repetidos y tres valores repetidos
de y como casos extremos.
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6.4. Estimación de modelos. Se ajustaron diferentes modelos de regresión lo-
gística:

Modelo clásico: estimación mediante máxima verosimilitud (GLM están-
dar).
Modelo robusto: estimación utilizando M-estimadores, específicamente:
• Estimador de Huber, basado en la función de pérdida propuesta por

Huber (1964).
• Estimador de Bianco–Yohai (BY), especializado en regresión logís-

tica robusta (Bianco & Yohai, 1996).

6.5. Análisis comparativo. Para evaluar el desempeño de los modelos, se ge-
neraron gráficas y tablas comparativas mostrando las curvas y los valores de
predicción del modelo clásico y de los modelos robustos. Esto permitió observar
cómo los outliers afectan la estimación de parámetros y la capacidad de ajuste de
cada modelo, destacando la ventaja de los estimadores robustos en presencia de
valores extremos.

7. Resultados y Análisis

se desea observar el comportamiento que tienen los estimadores puntuales de la
media y la varianza, para ello se analizará un conjunto de datos sin valores atípicos
y con valores atípicos, mediante el siguiente ejemplo;

Ejemplo Ilustrativo: Contenido de hierro en agua (ppm)
Se midió el contenido de hierro (en partes por millón) en 20 muestras de agua:

1,8 2,0 2,1 2,2 2,3 2,4 2,5 2,5
2,6 2,6 2,7 2,8 2,8 2,9 3,0 3,1
3,1 3,2 3,3 15,0

Observemos que el valor 15,0 se considera un valor atípico (outlier) ya que es
un dato que se encuentra muy alejado de las demás observaciones. Comparación
de resultados

Estadístico Sin outlier Con outlier
Media 2,626 3,425
Desviación estándar 0,42 2,80

la siguiente Figura 3 y muestra el comportamiento de los datos, la media sin
el outlier y con el outlier notando el efecto y la poca robustez de los estimadores
analizados.

Observando la figuras 4 y 5 podemos notar que el modelo GLM clásico con
outliers se desvia bastante de la real la pendiente β1 véase el tabla 1 y 2 es más
baja porque los outliers tiran del ajuste hacia el centro, lo que denota sensibilidad
a los valores atípicos.

En cambio la curva verde es la que mejor se ajusta a la curva real, la pendiente
β1 véase el cuadro 1 y 2 es más cercano al real, esto implica que sigue de cerca la
curva real, aunque parece un poco más suavizada en los extremos, lo que refleja la
propiedad redescendente del estimador BY que reduce la influencia de los valores
atípicos más severos.
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Media.png

Figura 3. Contenido de hierro en 20 muestras de agua. El punto
rojo indica un valor atípico (15.0 ppm).

Tabla 1. Comparación de modelos: coeficientes y métricas de ajuste

Modelo Coeficientes AIC Deviance LogLik
Valores reales (β0 = 0, β1 = 2) – – –
GLM sin outliers (β0 = 0,311, β1 = 1,993) 93.72548 89.72548 -44.86274
GLM con outliers (β0 = 0,199, β1 = 0,925) 126.69593 122.69593 -61.34797
Robusto Huber (β0 = 0,258, β1 = 1,812) 137.48300 133.48300 –
Robusto BY (β0 = 0,299, β1 = 2,081) 143.73029 139.73029 -69.86514
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Figura 4. Comparación de modelos (2 outliers repetidos 2 veces).

Interpretación Tabla 1 :
GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 93.73 y
desviancia = 89.73 más bajos, y LogLik = -44.86 menos negativo.
GLM con outliers: La presencia de valores extremos aumenta AIC =
126.70 y desviancia = 122.70, y disminuye LogLik = -61.35, indicando peor
ajuste.
Robusto Huber: Aunque AIC = 137.48 y desviancia = 133.48 son más altos
y LogLik no está definido, las estimaciones son estables frente a outliers.
Robusto BY: Similar al Huber; la robustez sacrifica el ajuste clásico (AIC =
143.73 y LogLik = -69.87 más altos/negativos), pero protege los coeficientes
de la influencia de outliers.

Tabla 2. Comparación de modelos: coeficientes y métricas de ajuste

Modelo Coeficientes AIC Deviance LogLik
Valores reales (β0 = 0, β1 = 2) – – –
GLM sin outliers (β0 = 0,311, β1 = 1,993) 93.72548 89.72548 -44.86274
GLM con outliers (β0 = 0,178, β1 = 0,668) 136.52294 132.52294 -66.26147
Robusto Huber (β0 = 0,235, β1 = 1,573) 151.76689 147.76689 –
Robusto BY (β0 = 0,299, β1 = 2,081) 168.70511 164.70511 -82.35256

121



Figura 5. Comparación de modelos (2 outliers repetidos 3 veces).

Interpretación tabla 2

GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 93.73
y desviancia = 89.73 más bajos, y LogLik = -44.86 menos negativo. Los
coeficientes estimados (β0 = 0,311, β1 = 1,993) se aproximan bastante a los
valores reales (β0 = 0, β1 = 2).
GLM con outliers: La presencia de valores extremos aumenta AIC =
136.52 y desviancia = 132.52, y disminuye LogLik = -66.26, indicando un
peor ajuste. Los coeficientes (β0 = 0,178, β1 = 0,668) se alejan significativa-
mente de los valores reales.
Robusto Huber: Aunque AIC = 151.77 y desviancia = 147.77 son más
altos y LogLik no está definido, las estimaciones (β0 = 0,235, β1 = 1,573)
muestran estabilidad frente a outliers, acercándose más a los valores reales
que el GLM con outliers.
Robusto BY: Similar al Huber; la robustez sacrifica el ajuste clásico (AIC =
168.71 y LogLik = -82.35 más altos/negativos), pero los coeficientes (β0 =
0,299, β1 = 2,081) se acercan mucho a los valores reales, indicando gran
protección frente a la influencia de outliers.

Observando la figura 6 podemos notar que el modelo GLM clásico con outliers se
desvia bastante de la real la pendiente β1 véase el cuadro ?? es más baja porque
los outliers tiran del ajuste hacia el centro, lo que denota sensibilidad a los valores
atípicos.
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En cambio la roja es la que mejor se ajusta a la curva real, la pendiente β1 véase
el cuadro 1 es más cercano al real, esto implica que sigue de cerca la curva real
mostrando que Huber es bastante efectivo.

En cambio la curva verde se ajusta bien, aunque ligeramente más conservadora
en valores extremos. Esto debido a los outliers son menos extremos o la proporción
de contaminación es modesta ( ε = 0,1) por lo que Huber puede adaptarse mejor,
conservando información relevante que BY podría descartar como ruido.

de outliers.png

Figura 6. Comparación de modelos (usando ε = 0,1).

Modelo Coeficientes AIC Deviance LogLik
GLM sin outliers (β0 = −0,159, β1 = 2,471) 75.15171 71.15171 -35.57585
GLM con outliers (β0 = −0,054, β1 = 0,36) 137.23405 133.23405 -66.61702
Robusto Huber (β0 = −0,071, β1 = 0,791) 143.31220 139.31220 NA
Robusto BY (β0 = −0,06, β1 = 0,537) 138.35826 134.35826 -67.17913

Tabla 3. Comparación de modelos: coeficientes y criterios de ajuste.
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interpretación tabla 3 :
GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 75.15
y desviancia = 71.15 más bajos, y LogLik = -35.58 menos negativo. Los
coeficientes (β0 = −0,159, β1 = 2,471) se aproximan razonablemente a los
valores reales (β0 = 0, β1 = 2), mostrando que el modelo captura bien la
relación entre x y y cuando no hay contaminación.
GLM con outliers: La presencia de outliers eleva AIC = 137.23 y desvian-
cia = 133.23, y reduce LogLik = -66.62, mostrando un ajuste mucho peor
comparado con el modelo sin outliers. Los coeficientes (β0 = −0,054, β1 =
0,36) se alejan significativamente de los valores reales, evidenciando la sen-
sibilidad del GLM clásico ante datos atípicos.
Robusto Huber: Aunque AIC = 143.31 y desviancia = 139.31 son más
altos y LogLik no está definido, las estimaciones (β0 = −0,071, β1 = 0,791)
permanecen relativamente estables frente a la contaminación ε = 0,1. Esto
muestra que el estimador robusto Huber protege los coeficientes frente a los
outliers, aunque sacrifica algo de ajuste clásico.
Robusto BY: La robustez sacrifica también el ajuste clásico (AIC = 138.36
y LogLik = -67.18), pero los coeficientes (β0 = −0,06, β1 = 0,537) se man-
tienen relativamente protegidos frente a la influencia de los outliers, demos-
trando la eficacia de la aproximación BY en situaciones con contaminación
moderada.

8. Conclusiones

En el estudio de la regresión logística los modelos GLM clásicos se ajusta muy
bien cuando tenemos datos sin presencia de valores atípicos, obteniendo valores de
β0 y β1 cercanos a los verdaderos, además, de AIC, desviancia y LogLik óptimos.
Pero, al considerar datos influenciados por valores atípicos se obtiene un aumento
en el AIC y desviancia, y disminuye LogLik, afectando seriamente los coeficientes
estimados.

Consideranado el análisis y los resultados de los estimadores robustos (Huber
y BY) en la regresión logística se observa que los coeficientes están cercanos a los
valores reales aun en presencia de outliers. Pero, cabe resaltar en este caso que el
AIC y desviancia son más altos, en el caso de Huber el loglik es indefinido, por
lo que se sacrifica de cierta manera el ajuste clásico para cuidar la estimación de
parámetros cuando se considera la contaminación de los datos.

Al introducir un entorno de contaminación del 10% el efecto en el modelo clásico
es significativo, pero en los modelos robusto se puede notar una alta resistencia
frente a esta contaminación. Por tanto un estudio con regresión logística robusta
evita pérdida de información valiosa y malas interpretaciones de los resultados.

9. Trabajos Futuros

Analizar modelos de regresión logística robusta con más variables explicativas,
con el fin de evaluar el comportamiento de los M-estimadores en dimensiones supe-
riores, considerando otros M-estimadores, con diferentes niveles de contaminación,
diferentes tamaños de muestra y estudio de diferentes criterios de comparación para
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caso robusto.

Considerar la extensión del enfoque robusto hacia la regresión beta. La incorpo-
ración de estimadores robustos en este contexto podría mejorar el desempeño ante
observaciones atípicas o distribuciones altamente asimétricas.
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MÁS ALLÁ DE TENDENCIAS PARALELAS: UN ENFOQUE
UNIVERSAL PARA ESTIMAR EFECTOS DISTRIBUCIONALES

EN DID

SANCHEZ ANTHONY

Resumen. Este trabajo analiza la identificación causal en diseños Difference-
in-Differences de dos periodos cuando el supuesto de Tendencias Paralelas
puede no ser plausible, especialmente en entornos con resultados no lineales o
discretos, o cuando el interés recae en parámetros distribucionales como el efec-
to cuantil en los tratados. En estos casos, las restricciones aditivas implícitas
en el enfoque tradicional pueden fallar y alterar la comparación contrafactual
entre grupos.

Para superar esta limitación, se introduce la condición de Odds Ratio Equi-
Confounding, que describe la confusión en la escala de razón de probabilidades
generalizada y permite una representación invariante a la escala del resultado
potencial.

Abstract. This paper examines causal identification in two-period Difference-
in-Differences settings when the usual Parallel Trends assumption may not be
credible, particularly in applications where the outcome is nonlinear or dis-
crete, or when interest lies in distributional parameters such as the quantile
treatment effect on the treated. In such contexts, additive and scale-dependent
restrictions underlying conventional DiD can fail, making the standard decom-
position of counterfactual trends invalid.

To address this limitation, the analysis adopts the Odds Ratio Equi-Confounding
condition, which characterizes confounding on the generalized odds-ratio sca-
le and yields a scale-invariant representation of the counterfactual outcome
distribution.

Fecha: Agosto 2025.
Palabras y frases clave. Inferencia causal, Diferencias en diferencias, OREC–UDiD, Efectos

cuantilísticos (QTT), Confusión no observada.
1
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1. Introducción

Los diseños de difference-in-differences (DiD) constituyen una de las metodolo-
gías centrales para la identificación de efectos causales en entornos observacionales.
Su formulación clásica, sistematizada en [3], descansa en un esquema 2 × 2: dos
periodos, un grupo tratado y un grupo de comparación. En este marco, la identi-
ficación del efecto medio del tratamiento sobre los tratados (ATT) se apoya en el
supuesto de tendencias paralelas (PT), según el cual, en ausencia de tratamiento,
los resultados potenciales no tratados habrían evolucionado, en promedio, de forma
equivalente entre ambos grupos.
Sin embargo, el supuesto PT presenta limitaciones estructurales. Se formula en la
escala aditiva, lo que puede entrar en tensión con restricciones naturales del soporte
del resultado cuando éste es binario, discreto o mixto. Además, PT no es invariante
frente a transformaciones monótonas, de modo que su plausibilidad depende de la
escala en que se mida la variable de interés, aun cuando el parámetro causal subya-
cente sea invariante por construcción. Por otra parte, PT no se adapta de manera
natural a parámetros no lineales, como efectos sobre la distribución o sobre cuantiles
de los tratados, restringiendo el alcance inferencial del esquema DiD convencional.

En respuesta a estas limitaciones, la literatura reciente ha propuesto condiciones
alternativas que modelan el sesgo de confusión de forma más flexible. Entre ellas,
el marco Odds Ratio Equi-Confounding (OREC) desarrollado por Park y Tchet-
gen Tchetgen [20] reformula el problema en la escala del odds ratio generalizado,
exigiendo estabilidad temporal de la asociación entre el tratamiento y el resultado
potencial no tratado. Esta construcción es compatible con resultados continuos, dis-
cretos o mixtos, es invariante a transformaciones monótonas, permite la presencia
de confusores no observados y admite una teoría completa de eficiencia semipara-
métrica. En este trabajo se desarrolla un marco unificado para la identificación y
estimación de efectos causales en diseños DiD bajo el supuesto OREC, se deriva
la función de influencia eficiente, se construye un estimador N1/2-consistente me-
diante técnicas de cross-fitting y se ilustra, mediante una simulación controlada, el
comportamiento del enfoque en configuraciones en las que el supuesto de tendencias
paralelas falla de manera sistemática.

2. Justificación

La investigación se motiva por la necesidad de disponer de herramientas formales
que permitan evaluar efectos causales cuando las trayectorias de los grupos no son
comparables y cuando la estructura del resultado exige ir más allá de los promedios.
En muchos problemas económicos y de política pública, los grupos tratados y de
comparación presentan diferencias previas al tratamiento, respuestas heterogéneas
y posibles fuentes de confusión no observada. Bajo estas condiciones, los supuestos
aditivos tradicionales dejan de ser una simple conveniencia técnica y se convierten
en una restricción fuerte sobre el proceso generador de datos, especialmente cuando
el resultado es discreto, acotado o presenta colas de particular interés.

En este contexto, la adopción del marco Universal Difference-in-Differences (UDiD)
bajo el supuesto Odds Ratio Equi-Confounding (OREC) ofrece una justificación
metodológica precisa: permite caracterizar el contrafactual de los tratados en una
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escala invariante a transformaciones monótonas y compatible con parámetros dis-
tribucionales como el efecto cuantil en los tratados (QTT). Este tipo de parámetros
es especialmente adecuado cuando el impacto de una política no se refleja de for-
ma uniforme a lo largo de la distribución, sino que se concentra en determinados
cuantiles o segmentos de la población. El uso de funciones de influencia eficientes y
de técnicas de estimación no y semiparamétricas proporciona un marco en el que la
presencia de confusión no observada puede tratarse explícitamente, sin renunciar a
una teoría asintótica clara ni a condiciones de identificación transparentes.

Desde la perspectiva académica, el trabajo se inscribe de manera natural en la
orientación en Estadística de la Maestría en Matemáticas, al combinar inferencia
causal, modelación semiparamétrica y análisis distribucional dentro de un mismo
esquema formal. La construcción del estimador, el estudio de sus propiedades de
eficiencia y la representación de la confusión mediante razones de densidad y razones
de momios generalizadas se alinean con las líneas de investigación en econometría y
procesos estocásticos, donde la estructura matemática del modelo es tan importante
como su interpretación aplicada. De este modo, la investigación contribuye a tender
un puente entre la teoría estadística moderna y los problemas de identificación
causal que surgen en el análisis de políticas económicas contemporáneas.

3. Antecedentes

Los diseños de DiD tienen una larga trayectoria en la evaluación de efectos cau-
sales en contextos observacionales, con aplicaciones que se remontan al siglo XIX
y una consolidación moderna en economía aplicada y ciencias sociales [3]. En su
formulación canónica, el diseño 2 × 2 considera dos periodos (pre y post) y dos
grupos (tratado y de comparación), y define el estimador DiD como la diferencia
entre el cambio promedio en el grupo tratado y el cambio promedio en el grupo de
control. Bajo el supuesto de tendencias paralelas (PT), esto es, que en ausencia de
tratamiento el cambio esperado en el resultado potencial no tratado hubiera sido
igual en ambos grupos, dicho estimador coincide con el efecto medio del tratamiento
sobre los tratados (ATT) [16, 1, 24]. Esta simplicidad conceptual explica en buena
medida la enorme difusión del enfoque DiD en estudios empíricos recientes.

Con el tiempo, la práctica empírica dejó de restringirse al esquema 2×2 y evolu-
cionó hacia configuraciones más complejas: múltiples periodos, adopción escalonada
del tratamiento, tratamientos de intensidad variable, incorporación de covariables
y heterogeneidad marcada en los efectos [3]. Durante años, el uso de modelos de
regresión con efectos fijos de unidad y tiempo (especificaciones two-way fixed effects,
TWFE) se convirtió en el estándar para implementar estos diseños, apoyándose en
la equivalencia entre la regresión lineal y el estimador DiD en el caso básico. Sin
embargo, investigaciones recientes han mostrado que, cuando los efectos del trata-
miento son heterogéneos o la estructura del diseño se aparta del caso simple, los
estimadores TWFE pueden producir combinaciones ponderadas difíciles de inter-
pretar, con pesos negativos y, en casos extremos, estimaciones de signo contrario al
efecto causal subyacente [15, 9, 28]. Estas evidencias han motivado un giro metodo-
lógico hacia marcos de análisis que “descomponen” cualquier diseño DiD complejo
en bloques elementales 2×2 y construyen a partir de ellos los parámetros de interés
mediante un enfoque de forward-engineering, es decir, fijando primero el parámetro

128



objetivo y derivando después el estimador adecuado [3].

En paralelo, la propia formulación del supuesto PT ha sido objeto de revisión
crítica. En su versión estándar, PT es un supuesto aditivo sobre los resultados po-
tenciales no tratados: exige la igualdad, entre grupos, de las diferencias esperadas
E(Y (0)

1 − Y
(0)

0 | ·), lo cual es natural para resultados continuos sin restricciones de
soporte, pero puede resultar problemático cuando la variable de interés es binaria,
discreta o acotada. En estos casos, las extrapolaciones implícitas de PT pueden
producir contra–ejemplos en los que el “contrafactual aditivo” sale fuera del rango
posible del resultado, o bien resulta incompatible con la evidencia empírica aun
cuando la dinámica verdadera sea razonable desde el punto de vista probabilístico.
Además, PT es sensible a transformaciones monótonas del resultado: la plausibi-
lidad del supuesto puede cambiar al pasar, por ejemplo, de niveles a logaritmos,
aunque el objeto causal de interés (como un efecto sobre la distribución) no depen-
da de la escala particular en que se mida el resultado. Estas limitaciones se vuelven
especialmente agudas cuando el interés se desplaza desde el ATT hacia parámetros
distribucionales, como los efectos cuantilísticos en los tratados (QTT), para los que
la estructura aditiva de PT no proporciona una ruta natural de identificación.

Para superar estas restricciones, la literatura ha propuesto múltiples extensiones
y alternativas al supuesto PT clásico. Los modelos de changes-in-changes (CiC)
introducen una estructura basada en transformaciones monótonas de un factor la-
tente común, lo que permite identificar efectos distribucionales bajo una hipótesis
de estabilidad en la distribución del “shock” subyacente [2]. Otros trabajos han for-
mulado variantes no lineales de PT mediante la aplicación de funciones de enlace
que restablecen la igualdad de tendencias en escalas transformadas, como en el caso
de la nonlinear parallel trends (NPT) [21, 30]. En una dirección distinta, algunos
enfoques han recurrido a condiciones sobre la función característica logarítmica del
resultado potencial [5], o bien a suposiciones de estabilidad en la cópula que rela-
ciona el resultado pretratamiento y el cambio del resultado a lo largo del tiempo
[7, 6]. Finalmente, los esquemas de ignorabilidad secuencial extienden ideas de la
evaluación de tratamientos en series temporales, imponiendo que, condicionando en
resultados y covariables previas, no exista confusión no observada entre tratamiento
y resultado potencial posterior [10].

No obstante, ninguna de estas alternativas constituye una solución universal al
problema DiD. Los enfoques basados en PT (lineal o no lineal) y en funciones ca-
racterísticas suelen ser sensibles a la escala en que se mide el resultado; los modelos
CiC[18] se apoyan en supuestos de monotonicidad y rank-preservation difíciles de
verificar; las estrategias de cópulas requieren condiciones fuertes sobre la estructu-
ra de dependencia; y las formulaciones de ignorabilidad secuencial, si bien generan
marcos potentes, descansan en la ausencia de confusores no observados, lo que ra-
ra vez es inocuo en aplicaciones económicas. Además, muchos de estos desarrollos
carecen de una teoría completa de eficiencia semiparamétrica para parámetros dis-
tribucionales, lo que limita su capacidad para guiar el diseño de estimadores que
aprovechen de forma óptima la información disponible en la muestra.
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En este escenario surge el enfoque Odds Ratio Equi-Confounding (OREC), pro-
puesto dentro del marco Universal Difference-in-Differences (UDiD) [20]. La idea
central consiste en representar el sesgo de confusión —debido a variables no obser-
vadas que afectan simultáneamente el tratamiento y el resultado potencial libre de
tratamiento— mediante funciones de razón de momios generalizadas que vinculan el
tratamiento con el resultado potencial en cada periodo. El supuesto OREC postula
que esa estructura de confusión, expresada en la escala del odds ratio generalizado,
permanece estable entre el periodo pre y el periodo post. Esta formulación presenta
varias ventajas acumulativas: es aplicable a resultados continuos, discretos o mix-
tos; es invariante a transformaciones monótonas del resultado; admite la presencia
de confusores no observados siempre que su efecto sea estable en la escala de razón
de momios; y permite derivar funciones de influencia eficientes y estimadores de
raíz-N consistentes sin imponer parametrizaciones rígidas sobre las distribuciones
subyacentes.

El marco UDiD, construido sobre OREC, proporciona así una síntesis entre la
tradición DiD y la teoría moderna de inferencia semiparamétrica. Por un lado,
preserva la lógica contrafactual de los diseños DiD, al centrarse en la identificación
del resultado potencial no tratado de los grupos expuestos al tratamiento. Por otro,
desplaza el análisis desde la escala aditiva hacia una escala log–odds que resulta
compatible con distintos tipos de variables y con parámetros distribucionales como
el QTT. Al incorporar funciones de influencia eficientes y técnicas de estimación
basadas en cross-fitting, el enfoque UDiD ofrece un marco general para estudiar
efectos causales en contextos donde los supuestos clásicos de tendencias paralelas se
muestran frágiles, abriendo la puerta a aplicaciones en las que la heterogeneidad del
efecto y la estructura del resultado son elementos centrales del problema empírico.

130



4. Diferencias en diferencias

Desde mediados del siglo XIX, el diseño de Difference-in-Differences (DiD) ha ocu-
pado un lugar central en la estimación de efectos causales dentro de las ciencias
sociales. Su esencia radica en comparar la evolución temporal de un grupo ex-
puesto a un tratamiento con la de otro que permanece sin tratar, de modo que la
inferencia no se base en niveles absolutos sino en cambios relativos. En su forma
más elemental -con dos periodos y dos grupos- el estimador DiD se define como la
diferencia entre las variaciones promedio del resultado en ambos grupos: la diferen-
cia de dos diferencias.

El fundamento identificador de este esquema descansa en el supuesto de PT: en
ausencia del tratamiento, las trayectorias promedio de ambos grupos habrían sido
paralelas en el tiempo. Bajo esta condición, la comparación de diferencias permite
recuperar el ATT.

Con el desarrollo de bases de datos más amplias y paneles de largo horizon-
te, los diseños DiD se extendieron a configuraciones más complejas. Las unidades
pueden recibir el tratamiento en distintos momentos o intensidades, y las varia-
bles de control se incorporan para mejorar la comparabilidad entre grupos. En este
contexto, la práctica empírica consolidó el uso de modelos de regresión lineal con
efectos fijos por unidad y por tiempo -el estimador conocido como Two-Way Fixed
Effects (TWFE)- cuya popularidad se sustentó en que, en el caso 2 × 2, reprodu-
ce exactamente el estimador clásico de DiD calculado a partir de medias muestrales.

Este señalamiento fue desarrollado con particular detalle por Baker, Larcker y
Wang [4]. Mediante un extenso estudio de simulación, los autores evalúan el desem-
peño de siete métodos modernos de DiD bajo escenarios con efectos constantes y
heterogéneos, mostrando que muchos de ellos presentan intervalos de confianza que
no cubren el efecto promedio verdadero con la frecuencia nominal y que, además,
sufren de baja potencia estadística.

Ante estas limitaciones, Baker, Callaway, Cunningham, Goodman-Bacon y Sant’Anna
[3] proponen un marco unificado para los diseños DiD basado en los principios de
la inferencia causal y la heterogeneidad del tratamiento. La propuesta se orienta
hacia un marco unificado que reconcilia la diversidad de aplicaciones empíricas bajo
los principios de la inferencia causal en presencia de heterogeneidad del efecto del
tratamiento. En esencia, incluso los diseños más complejos pueden descomponerse
en una colección de comparaciones elementales 2 × 2: pares de unidades en las que
el tratamiento varía frente a otras en las que no lo hace. Cada uno de estos bloques
constituye un “building block” identificador, cuya validez depende únicamente del
supuesto de PT local a esa comparación.

Los autores denominan esta estrategia un enfoque de forward-engineering, pues
parte de la definición clara de los parámetros de interés y, a partir de ellos, cons-
truye los métodos analíticos necesarios para su estimación. Este modo de proceder
contrasta con la práctica habitual de reverse-engineering, que inicia desde especi-
ficaciones de regresión familiares y luego intenta derivar las condiciones bajo las
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cuales podrían tener interpretación causal.

Al adoptar esta perspectiva, se evita la ambigüedad que genera el uso indiscrimi-
nado de modelos Two-Way Fixed Effects, cuya interpretación varía según la especi-
ficación y puede inducir confusión entre cambios en los supuestos de identificación y
alteraciones en el parámetro objetivo. En cambio, el enfoque de forward-engineering
ofrece una estructura metodológica en la que diferentes estimadores apuntan a un
mismo parámetro, diferenciándose solo por la naturaleza explícita de los supuestos
que los sostienen.

4.1. Diseño 2 × 2. El punto de partida de todo análisis es el diseño canónico
2×2, en él se consideran dos grupos -uno tratado y otro no tratado- y dos periodos
de tiempo —uno previo y otro posterior a la introducción del tratamiento-.

Este supuesto establece que, en ausencia del tratamiento, ambas poblaciones
habrían experimentado la misma variación promedio en el tiempo.

4.1.1. Efectos causales y parámetros objetivo. Todo análisis causal debe comen-
zar con la definición explícita de la cantidad de interés, o parámetro objetivo. Esta
definición se formula naturalmente dentro del marco de resultados potenciales de-
sarrollado por Rubin (1974) y Robins (1986)[23].

Definition 4.1. Sea Y 0
i,t el resultado potencial de la unidad i en el periodo t si

permaneciera sin tratamiento en ambos periodos, y Y 1
i,t el resultado potencial si no

recibiera tratamiento en el primer periodo pero sí en el segundo.

Dado que los resultados potenciales son mutuamente excluyentes, en la prácti-
ca solo se observa uno de ellos para cada unidad. El resultado observado puede
expresarse como
(4.1) Yi,t = (1 − Di)Y 0

i,t + DiY
1

i,t,

donde la función de decisión

Di =
{

1, si la unidad (i) está expuesta al tratamiento en (t),
0, en caso contrario.

Equivalentemente, Yi,t puede interpretarse como la realización efectiva de la fun-
ción:

Yi,t = Y Di
i,t =

{
Y 0

i,t, si Di = 0,

Y 1
i,t, si Di = 1,

Un supuesto central para la validez del diseño DiD es el de no anticipación (no
anticipation). Este establece que el tratamiento no afecta los resultados antes de su
implementación efectiva, es decir,

Y 1
i,0 = Y 0

i,0,

para todo i. Este supuesto garantiza que los resultados previos reflejan el estado
no tratado y permite definir con precisión el momento en que el tratamiento surte
efecto.
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Supuesto 1. NA (No-Anticipation).
Y 1

i,t = Y 0
i,t, ∀i ∈ Di = 1, ; ∀t previo al tratamiento.

El supuesto de no anticipación establece que, para todas las unidades tratadas y
en todos los periodos previos a la intervención, los resultados potenciales bajo tra-
tamiento y no tratamiento son idénticos.

Definition 4.2. Bajo el marco de resultados potenciales, el efecto causal individual
se define como la diferencia

Y 1
i,t − Y 0

i,t,

que representa el impacto del tratamiento sobre la unidad i en el periodo t.

Este marco permite la existencia de heterogeneidad arbitraria en los efectos del
tratamiento entre unidades y a lo largo del tiempo, es decir, los efectos pueden
diferir para cada i y t. Sin embargo, aprender sobre esta heterogeneidad completa
requiere supuestos adicionales fuertes.

En la práctica, los diseños DiD no buscan identificar efectos individuales, sino
promedios ponderados de ellos. En particular, el parámetro más comúnmente es-
timado es el efecto promedio del tratamiento sobre los tratados en el tiempo t,
denotado ATTt:

(4.2) ATTt = Eω

[
Y 1

i,t − Y 0
i,t | Di = 1

]

= Eω

[
Y 1

i,t | Di = 1
]

− Eω

[
Y 0

i,t | Di = 1
]
,

donde Eω[·] denota un promedio ponderado según un esquema de pesos ωi.

La expresión 4.2 muestra que ATTt compara el promedio ponderado de los resulta-
dos observados en el periodo posterior entre las unidades tratadas con el promedio
ponderado de los resultados contrafactuales -no observados- que esas mismas uni-
dades habrían tenido de no haber recibido el tratamiento.

Bajo el supuesto de no anticipación, se cumple además que ATTt = 0, ∀t previo al tratamiento,
lo cual implica que las diferencias entre grupos antes de la intervención reflejan úni-
camente brechas en los resultados potenciales no tratados.
La inclusión de pesos ωi no es un detalle técnico posterior, sino una decisión sus-
tantiva que determina la población de referencia del efecto estimado.

En este sentido, el ATTt ponderado y el no ponderado representan parámetros
distintos. Mientras el primero describe el efecto promedio del tratamiento sobre una
población definida por el esquema de pesos -por ejemplo, ponderada por tamaño
o relevancia de las unidades-, el segundo se refiere al efecto promedio simple sobre
las unidades tratadas. Así, las comparaciones entre estimaciones ponderadas y no
ponderadas no reflejan diferencias de eficiencia estadística, sino variaciones en el
propio parámetro objetivo.

Este punto cobra especial importancia en contextos con efectos heterogéneos del
tratamiento, donde adoptar una estructura de ponderación destinada a mejorar la
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precisión en presencia de heterocedasticidad -como en las regresiones de coeficientes
constantes- puede alterar sustancialmente el parámetro identificado. Como advier-
ten Solon, Haider y Wooldridge (2015)[27], cuando los efectos del tratamiento se
correlacionan con los pesos, el parámetro ponderado puede diferir notablemente del
no ponderado, lo que implica que ambos deben interpretarse como objetos causales
distintos.

Cuando se reconoce la existencia de heterogeneidad en los impactos del trata-
miento, resulta útil examinar no solo el efecto promedio, sino también cómo dicho
impacto se distribuye a lo largo de los distintos puntos de la distribución de los
resultados potenciales.

4.2. Identificación de supuestos: Tendencias paralelas. Todo diseño de in-
vestigación causal se sustenta en un conjunto de supuestos de identificación que
permiten recuperar los parámetros objetivo a partir de datos observados. En el ca-
so del diseño DiD, la identificación del contrafactual necesario para estimar ATTt

requiere establecer una relación entre los resultados observados y los potenciales no
tratados.

En principio, existen múltiples supuestos que podrían identificar dicho contra-
factual. Uno de ellos es la independencia en medias, que asumiría

Eω[Y 0
i,t | Di = 1] = Eω[Y 0

i,t | Di = 0],

lo que implica que, condicionalmente, el tratamiento es asignado de forma aleato-
ria. Bajo este supuesto, la diferencia transversal entre grupos en el periodo posterior
identificaría directamente el ATTt.

Otra posibilidad es la invariancia temporal de los resultados potenciales no tra-
tados, que supone

Eω[Y 0
i,t | Di = 1] = Eω[Y 0

i,t−1 | Di = 1],

en cuyo caso la variación temporal dentro del grupo tratado equivaldría al efecto
del tratamiento.

No obstante, ambos supuestos son demasiado restrictivos en la práctica. El pri-
mero ignora las diferencias estructurales entre grupos antes del tratamiento, y el
segundo desconoce la posibilidad de cambios temporales comunes que afectan a
todas las unidades.

El diseño DiD se fundamenta, en cambio, en un supuesto más general: el de ten-
dencias paralelas.

Definition 4.3. El supuesto de PT en el diseño 2 × 2 establece que el cambio
promedio ponderado en los resultados potenciales no tratados es el mismo entre el
grupo tratado y el grupo de comparación. Formalmente,

(4.3) Eω[Y 0
i,t=2 − Y 0

i,t=1 | Di = 1]
︸ ︷︷ ︸

No observado. contrafactual

= Eω[Y 0
i,t=2 − Y 0

i,t=1 | Di = 0].

134



Si esta condición se cumple, es posible construir el resultado contrafactual pro-
medio para las unidades tratadas en el periodo posterior, Eω[Y 0

i,t=2 | Di = 1], a
partir de cantidades observables. En particular,

(4.4)
Eω[Y 0

i,t=2 | Di = 1] = Eω[Y 0
i,t=1 | Di = 1] +

(
Eω[Y 0

i,t=2 | Di = 0] − Eω[Y 0
i,t=1 | Di = 0]

)

Sustituyendo la ecuación 4.4 en la definición de ATTt y reemplazando los resultados
potenciales no observados mediante los observados según 4.1, se obtiene el estimador
DiD en términos de promedios poblacionales:

(4.5)
AT Tt = Eω[Y 1

i,t | Di = 1] − Eω[Y 0
i,t | Di = 1]

=
(
Eω[Y 1

i,t | Di = 1] −Eω[Y 0
i,t−1 | Di = 1]

)
−

(
Eω[Y 0

i,t | Di = 0] − Eω[Y 0
i,t−1 | Di = 0]

)
.

︸ ︷︷ ︸
Eω [Y 0

i,t
|Di=1]

Esta expresión constituye el estimador canónico 2×2 DiD. La primera diferencia
interna elimina sesgos invariables entre grupos, mientras que la segunda diferencia
—entre las variaciones promedio de los grupos— captura el efecto causal medio del
tratamiento bajo el supuesto de PT.

En la práctica, la decisión de tratamiento suele estar determinada por actores
económicos o institucionales cuyas conductas pueden correlacionarse con las ten-
dencias de los resultados no tratados. De ahí que las aplicaciones empíricas de DiD
deban evaluar explícitamente la plausibilidad de este supuesto, tanto mediante evi-
dencia empírica como a partir de modelos teóricos sobre el proceso de selección.

La literatura reciente ha profundizado en la relación entre los mecanismos de
elección del tratamiento y las propiedades temporales de los resultados potenciales.
Si los agentes conocen y actúan sobre los valores futuros de Y 0

i,t, el supuesto de
PT solo podría sostenerse bajo condiciones muy restrictivas, como la constancia
temporal de Y 0

i,t salvo desplazamientos comunes[14].

En contextos más realistas, PT solo es válido si las variables que determinan la
selección al tratamiento dependen de componentes permanentes de los resultados
potenciales —por ejemplo, efectos fijos—, pero no de fluctuaciones transitorias. Si
la selección también responde a choques de corto plazo, el supuesto requerirá res-
tricciones temporales más fuertes sobre Yi,t0 para mantenerse válido.

Otra implicación relevante es que PT no garantiza invariancia ante transforma-
ciones funcionales del resultado. El supuesto se refiere a promedios de Y 0

i,t en su
forma específica, y no necesariamente se preserva bajo transformaciones como lo-
garitmos o tasas. Roth y Sant’Anna [22] demuestran que la insensibilidad funcional
de PT solo se cumple si el supuesto vale tanto entre grupos como a lo largo de
toda la distribución de Y 0

i,t, lo cual equivale a un escenario de adopción aleatoria o
estabilidad completa de la distribución. Cuando tales condiciones no son plausibles,
la validez del supuesto puede depender de la elección de escala o forma funcional
del resultado.
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4.3. Estimación e inferencia. El paso de la expresión poblacional del ATTt

a su forma estimable en la muestra se obtiene reemplazando los valores esperados
por sus análogos muestrales ponderados. Así, el estimador DiD en el diseño 2 × 2
se define como

(4.6) ÂTT t =
(
Y

ω

D=1,t − Y
ω

D=1,t−1
)

−
(
Y

ω

D=0,t − Y
ω

D=0,t−1
)
,

donde Y
ω

D=g,t representa la media ponderada de la variable de resultado Y para
el grupo g ∈ {0, 1} en el periodo t, dada por

Y
ω

D=g,t=t′ =

n∑

i=1
1{Di = g, ti = t′}ωiYi,t′

n∑

i=1
1{Di = g, ti = t′}ωi

.

La ecuación 4.6 constituye el estimador DiD clásico expresado como la diferencia
de dos diferencias de medias muestrales, cada una calculada dentro de su respectivo
grupo. Es una regla de estimación directa para el ATTt y la base de la mayoría de
implementaciones empíricas del método.

El mismo resultado expresado en la ecuación 4.6 puede obtenerse mediante la
estimación por mínimos cuadrados ponderados del parámetro β2×2 en el siguiente
modelo lineal, definido únicamente para los dos periodos de observación:

(4.7) Yi,t = β0 +β11{Di = 1}+β21{t = t2}+β2×2(
1{Di = 1}×1{t = t2}

)
+εi,t,

donde εi,t representa un término idiosincrático no correlacionado con Di, y los
coeficientes β son parámetros desconocidos.

En el caso no ponderado (ωi = 1), cada una de las cuatro medias muestrales
involucradas en ÂTT t puede expresarse en función de los coeficientes estimados del
modelo 4.6:

Y D=1,t2 = β̂0 + β̂1 + β̂2 + β̂2×2,

Y D=1,t1 = β̂0 + β̂1,

Y D=0,t2 = β̂0 + β̂2,

Y D=0,t1 = β̂0.

Sustituyendo estas expresiones en la definición del estimador DiD se obtiene
directamente que:

ÂTT t =
[
(��̂β0 + ��̂β1 + β̂2 + β̂2×2) − (��̂β0 + ��̂β1)

]
−

[
(��̂β0 + β̂2) − ��̂β0

]
= β̂2×2.

Por tanto, el coeficiente de interacción β2×2 del modelo lineal coincide exacta-
mente con el estimador DiD clásico.
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5. Un marco no paramétrico universal para el análisis de
diferencias en diferencias

Bajo el supuesto de PT, la variación esperada en el resultado potencial no trata-
do entre ambos periodos es la misma para los grupos tratado y de control, lo cual
permite identificar el efecto promedio del tratamiento sobre los tratados.

Sin embargo, en la práctica, la validez del supuesto PT suele verse comprometi-
da cuando existen diferencias sistemáticas en las covariables pretratamiento entre
grupos, lo que introduce sesgos en la evolución contrafactual de los resultados. Este
problema ha motivado una amplia literatura orientada a relajar o sustituir dicho
supuesto, mediante variantes como el PT condicional en covariables[16, 1, 25] o
transformaciones no lineales del resultado[30, 21]. A pesar de estos avances, tales
enfoques presentan limitaciones: se restringen en su mayoría a resultados continuos
y a efectos aditivos promedio, dependen de la escala de medición del resultado, pre-
suponen ausencia de confusores no observados o carecen de una teoría de eficiencia
semiparamétrica.

Frente a ello, surge una línea metodológica alternativa que replantea la iden-
tificación causal en términos de asociaciones invariantes entre el tratamiento y
los resultados potenciales no tratados. En particular, el supuesto de Odds Ratio
Equi-Confounding (OREC) introduce una representación del sesgo de confusión en
la escala del odds ratio generalizado, concepto desarrollado por Chen (2007)[8] y
Tchetgen Tchetgen et al. (2010)[29]. Bajo este enfoque, la relación entre el trata-
miento y el resultado potencial libre de tratamiento puede expresarse mediante una
función de razón de momios, lo que permite “depurar” dicho sesgo sin imponer
restricciones sobre el tipo de variable de resultado ni sobre su transformación.

El supuesto OREC constituye, por tanto, una generalización natural del PT en la
escala del odds ratio. No es estrictamente más fuerte ni más débil que los supuestos
tradicionales de la literatura DiD, sino una condición alternativa de identificación
que debe ser desarrollada y analizada de forma independiente. Su principal virtud
radica en su universalidad: permite estimar efectos causales sobre los tratados en
distintas escalas de interés -incluyendo ATT y QTT-, se aplica a resultados conti-
nuos, discretos o mixtos, es invariante ante transformaciones de escala y admite la
presencia de confusores no observados.

Además, la estructura analítica derivada de OREC admite una teoría completa de
eficiencia semiparamétrica, lo que lo posiciona como un marco general o “universal”
para la inferencia causal en contextos DiD[12].

5.1. Configuración del modelo. Sea N el número de unidades observadas,
indexadas por i ∈ {1, . . . , N}. Para cada unidad, se observa un vector de variables
aleatorias independientes e idénticamente distribuidas (i.i.d.)

O = (Yt, Yt+1, A, X),

A ∈ {0, 1} denota la asignación al tratamiento entre ambos periodos; y X ∈ X ⊆ Rd

corresponde al conjunto de covariables observadas de dimensión d.
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Denotemos por Y a
t el resultado potencial que se habría observado si, posible-

mente en contrafactual, el tratamiento hubiese sido fijado en A = a en el periodo
t ∈ {0, 1}. El parámetro de interés es el efecto promedio del tratamiento sobre los
tratados ATT , definido como

τ∗ = E[Y 1
1 − Y 0

1 | A = 1] = τ∗
1 − τ∗

0 ,

donde τ∗
a = E[Y a

1 | A = 1].

5.1.1. Densidades condicionales y función de propensión extendida. Para desarro-
llar el enfoque Universal Difference-in-Differences (UDiD) propuesto por Tchetgen
Tchetgen et al. (2024a)[12], se introducen las siguientes notaciones de densidades
condicionales.

Definition 5.1. Función de propensión extendida Sea
f∗

t (y | a, x), f∗
t (y, x | a), f∗

t (y, a, x)
las funciones de densidad de Y 0

t | (A = a, X = x), (Y 0
t , X) | (A = a) y (Y 0

t , A, X),
respectivamente. Asimismo, sea e∗

t (a | y, x) la densidad condicional de A dado
(Y 0

t = y, X = x).

Para garantizar identificabilidad, se impone la siguiente condición de soporte
común:

Supuesto 2. Soporte. La densidad conjunta f∗
t (y, a, x) tiene el mismo soporte

para todos los periodos t ∈ {0, 1} y para ambos estados de tratamiento a ∈ {0, 1}.
Es decir, existe un conjunto

S = {(y, x) : f∗
t (y, a, x) ∈ (0, ∞)},

tal que el soporte de las variables observadas es común entre los grupos tratados y
de control, tanto en el periodo previo como posterior al tratamiento.

Este supuesto establece que las combinaciones posibles de valores de las variables
de resultado (y) y de las covariables (x) deben tener presencia positiva en todos los
grupos y periodos del análisis. En otras palabras, ningún valor de x relevante para
los tratados puede estar completamente ausente en el grupo de control, ni viceversa.

El propósito de esta condición es garantizar que exista una base común de compara-
ción entre las unidades tratadas y no tratadas, de modo que el efecto del tratamiento
pueda identificarse a partir de diferencias observables.
Definition 5.2. Sea yR un valor de referencia del resultado tal que (yR, x) ∈ S.
Definimos para cada t ∈ {0, 1}:
(5.1)
β∗

t (x) = e∗
t (1 | yR, x)

e∗
t (0 | yR, x) , α∗

t (y, x) = f∗
t (y | 1, x)

f∗
t (y | 0, x)

f∗
t (yR | 0, x)

f∗
t (yR | 1, x) = e∗

t (1 | y, x)
e∗

t (0 | y, x)
e∗

t (0 | yR, x)
e∗

t (1 | yR, x) .

La función α∗
t (y, x) se conoce como función de razón de momios generalizada

(generalized odds ratio function, Chen, 2007; Tchetgen Tchetgen et al., 2010).

Por definición, α∗
t (y, x) > 0 para todo (y, x) ∈ S, y bajo ausencia de confusión

no observada (exchangeabilidad), se cumple que α∗
t (y, x) = 1 en todo su dominio y

α∗
t (yR, x) = 1 para todo x.
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Definimos además:

Definition 5.3. Función de resultado contrafactual promedio condicional.

µ∗(x) = E[Y 0
1 | A = 1, X = x],

de modo que el componente τ∗
0 del ATT puede escribirse como τ∗

0 = E[µ∗(X) | A =
1].

Finalmente, denotamos por logit(v) = log v/(1 − v) y expit(v) = 1/(1 + e−v) las
transformaciones logísticas estándar. Para un conjunto de índices I ⊆ {1, . . . , N},
sea

PI(V ) = |I|−1
∑

i∈I

Vi

la media empírica de V sobre dicho subconjunto, y P la media empírica sobre
toda la muestra. Usaremos la notación asintótica habitual: VN = OP (rN ) si VN /rN

es acotado en probabilidad, VN = oP (rN ) si converge a cero en probabilidad, y
VN

D−→ W para convergencia débil. Finalmente, V | Z
D= W | Z indica igualdad en

distribución condicional en Z.

5.1.2. Revisión de enfoques en DiD. Antes de introducir el supuesto OREC, con-
viene revisar los supuestos tradicionales que sustentan la identificación causal en
los modelos DiD.

Supuesto 3. Consistencia.

Yt = Y A
t casi seguramente, para todo t ∈ {0, 1}.

El Supuesto de consistencia establece que el resultado observado coincide con el
resultado potencial correspondiente al tratamiento efectivamente recibido. El Su-
puesto de no anticipación, por su parte, impone que la intervención no tiene efectos
causales sobre los resultados antes de su implementación. En consecuencia, bajo
ambos supuestos se cumple que Y0 = Y 0

0 para todas las unidades, independiente-
mente de su estado de tratamiento.

Bajo el Supuesto 3, el primer componente del parámetro τ∗ = E[Y 1
1 − Y 0

1 | A = 1]
se identifica directamente como τ∗

1 = E[AY1]
Pr(A=1) .

Por tanto, la identificación del ATT requiere únicamente establecer condiciones que
garanticen la identificabilidad del segundo término, τ∗

0 = E[Y 0
1 | A = 1].

Para ello, consideremos el modelo clásico propuesto por Athey e Imbens (2006)[2]
para el resultado potencial libre de tratamiento Y 0

t , suprimiendo las covariables
para simplificar la exposición. Se asume que, para t ∈ {0, 1}, el proceso generador
cumple:

(Modelo DiD): Y 0
t = ht(Ut), ht(u) = u + bT t, Ut = b0 + bAA + εt,

(2)

εt satisface ya sea invariancia temporal: ε1 | A
D= ε0 | A o,

(3)

invariancia respecto al tratamiento: εt | (A = 0) D= εt | (A = 1).(4)
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donde εt es un término de error no observado que se mantiene invariante en el
tiempo o respecto al tratamiento.
Dicha estructura implica dos posibles restricciones estocásticas:

En este modelo, Ut es una variable no observada y Y 0
t es una función determinis-

ta lineal de ella. El mecanismo de asignación A condicionado en Ut permanece, sin
embargo, sin restricción funcional. Además, el modelo DiD clásico supone preser-
vación de rangos (rank preservation), es decir, que no existen interacciones aditivas
entre A y Ut en la determinación de Y 0

t .

Mediante un razonamiento algebraico sencillo, puede demostrarse que este mode-
lo implica el conocido supuesto de tendencias paralelas, formulado condicionalmente
en covariables como

(PT) E[Y 0
1 − Y 0

0 | A = 1, X] − E[Y 0
1 − Y 0

0 | A = 0, X] c.s.
Este supuesto establece que, en ausencia del tratamiento, las tendencias pro-

medio de los resultados potenciales son equivalentes entre los grupos tratado y de
control, una vez condicionadas en las covariables observadas.

Bajo los Supuestos 3, 1 y PT, se obtiene de manera directa la expresión de identi-
ficación del ATT:
τ∗ = E

[
E(Y1 | A = 1, X)−E(Y1 | A = 0, X)+E(Y0 | A = 0, X)−E(Y0 | A = 1, X)

∣∣∣A = 1
]
,

lo cual justifica la construcción tradicional del estimador DiD bajo el supuesto de
tendencias paralelas. Este supuesto puede interpretarse como una restricción sobre
el grado de sesgo de confusión que afecta la asociación aditiva entre el tratamiento
A y el resultado potencial no tratado Y 0

1 . En efecto, el supuesto PT puede reescri-
birse de manera equivalente como E[Y 0

0 | A = 1, X] − E[Y 0
0 | A = 0, X] − E[Y 0

1 |
A = 1, X] − E[Y 0

1 | A = 0, X].
El lado derecho de la ecuación sería nulo en ausencia de confusión condicional en
X; por tanto, cualquier desviación de cero cuantifica la magnitud del sesgo de con-
fusión en la escala aditiva, aunque dicho sesgo no pueda observarse directamente.
La igualdad anterior establece que el sesgo aditivo posterior al tratamiento es iden-
tificable a partir del sesgo aditivo previo al mismo.

En este sentido, el supuesto de PT es equivalente a la denominada condición
de estabilidad del sesgo[16, 19], también conocida como supuesto de equi-confusión
aditiva (additive equi-confounding assumption, [26]). Bajo esta formulación, el gra-
do de confusión se evalúa en la escala aditiva, es decir, mediante la diferencia entre
las medias condicionales contrafactuales según el estado observado del tratamiento.

A pesar de su utilidad y simplicidad, el supuesto de PT puede resultar incom-
patible con las restricciones naturales que presentan ciertos tipos de variables de
resultado. En contextos donde los resultados son acotados o discretos -por ejemplo,
binarios, de conteo o proporciones-, la formulación aditiva del PT puede inducir
valores contrafactuales que exceden el dominio posible del resultado, comprome-
tiendo así su plausibilidad empírica. Esta incompatibilidad pone de relieve que el
PT, formulado en la escala lineal, puede no ser apropiado en situaciones donde la
naturaleza del resultado impone límites estructurales.
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Una limitación adicional del PT clásico es su falta de extensibilidad a medidas de
efecto no lineales, como el efecto cuantil del tratamiento sobre los tratados (QTT).
En estos casos, la interpretación aditiva del sesgo o de las diferencias medias resulta
insuficiente, dado que la relación causal puede manifestarse de forma no lineal a lo
largo de la distribución del resultado.

Con el fin de abordar estas limitaciones, Puhani (2012)[21] y Wooldridge (2022)[30]
propusieron el denominado supuesto de tendencias paralelas no lineales (Nonlinear
Parallel Trends, NPT). Este supuesto establece que las expectativas condicionales
transformadas de los resultados potenciales satisfacen el principio de tendencias
paralelas bajo una transformación monótona L(·), de manera que

(NPT) :L
(
E[Y 0

1 | A = 1, X]
)

− L
(
E[Y 0

0 | A = 1, X]
)

L
(
E[Y 0

1 | A = 0, X]
)

− L
(
E[Y 0

0 | A = 0, X]
)
.

Esta formulación generaliza el supuesto PT al permitir una relación funcional no
lineal entre el resultado y el tratamiento, preservando la estructura comparativa en
una escala transformada por L(·).

Diversos enfoques alternativos han sido desarrollados para identificar efectos del
tratamiento en entornos DiD no lineales. En particular, Athey e Imbens (2006)
introducen el modelo de cambios-en-cambios (Changes-in-Changes, CiC) para re-
sultados continuos, definido para t ∈ {0, 1} por

(CiC model)Y 0
t = ht(Ut),(5)

U1 | A
D= U0 | A.(6)

En este modelo, Ut representa una variable no observada de distribución conti-
nua, y ht(·) una transformación temporal estrictamente monótona (o no decreciente
en el caso de resultados discretos). Bajo estas condiciones, la distribución contra-
factual de Y 0

1 | (A = 1) puede identificarse de manera no paramétrica a partir de
los datos observados.

Para resultados discretos, la identificación puntual adicional requiere supuestos
de independencia condicional tales como Ut ⊥ A | Yt para t ∈ {0, 1}, o formula-
ciones equivalentes del tipo Y 0

t = ht(Ut, X) donde X es un conjunto continuo de
covariables que satisface Ut ⊥ X | A.

Por su parte, Bonhomme y Sauder (2011) [5] consideran el caso de un resultado
continuo generado por un modelo aditivo, en el cual las funciones características
logarítmicas de Y 0

t | A satisfacen el supuesto de PT en la escala logarítmica. Bajo
esta formulación, la función característica de Y 0

t | (A = 1) se identifica a partir de
la condición PT en la escala logarítmica, y la distribución correspondiente puede
recuperarse utilizando la relación biyectiva entre una distribución y su función ca-
racterística.

A partir de esta idea, Fan y Yu (2012)[13] introducen una versión distributiva
del supuesto DiD, postulando que la variación en los resultados potenciales libres
de tratamiento a lo largo del tiempo es independiente del estado de tratamiento,
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esto es, Y 0
1 − Y 0

0 ⊥ A. Este supuesto, conocido como Distributional difference-in-
differences, se ha utilizado en trabajos posteriores (Callaway et al., 2018; Callaway
y Li, [7]), aunque por sí solo resulta insuficiente para identificar la distribución con-
trafactual de Y 0

t | (A = 1).

Para lograr dicha identificación, Callaway et al. (2018) y Callaway y Li (2019) in-
troducen el supuesto de estabilidad de cópulas (copula stability assumption), expre-
sado en el diseño canónico como CY 0

0 ,,Y 0
1 −Y 0

0 |A=0 = CY 0
0 ,,Y 0

1 −Y 0
0 |A=1, donde CV,W |Z

denota la función cópula condicional de las variables aleatorias V y W dado Z.
Este supuesto establece que la estructura de dependencia entre el resultado previo
al tratamiento y el cambio temporal en el resultado potencial libre de tratamiento
es invariante entre los grupos tratado y no tratado.

Finalmente, Ding y Li (2019)[11] aplican la ignorabilidad secuencial (sequential
ignorability, véase Hernán y Robins, 2020[17]) al contexto DiD canónico como su-
puesto de identificación. En este caso, se asume la ausencia de confusores no obser-
vados que afecten simultáneamente la relación entre el resultado potencial posterior
al tratamiento y la variable de tratamiento, una vez controlados el resultado previo
y las covariables observadas, esto es: Y 0

t ⊥ A | (Y0, X).

Estos desarrollos ilustran la diversidad de estrategias existentes para relajar el
supuesto de PT abordando distintos aspectos del problema de identificación en
presencia de no linealidad, heterogeneidad o confusión no observada. No obstante,
cada uno de estos enfoques presenta limitaciones específicas -ya sea en términos de
aplicabilidad, eficiencia semiparamétrica o robustez estructural-, lo cual motiva la
introducción del supuesto Odds Ratio Equi-Confounding (OREC) como un marco
alternativo, general e invariante a la escala de medición del resultado.

5.2. Modelo generativo. A fin de generalizar los modelos clásicos DiD y CiC,
consideremos la formulación estructural introducida por Tchetgen Tchetgen. Su pro-
pósito es establecer un marco unificado de identificación causal aplicable a distintos
tipos de resultados y medidas de efecto. Suponiendo, para simplificar la exposición,
la ausencia de covariables explícitas, se define el siguiente modelo generativo:

(UDiD model) :Y 0
t ⊥ A | Ut,(7)

A | (U1 = u) D= A | (U0 = u) para todo u,(8)

U1 | (A = 0, Y1 = y) D= U0 | (A = 0, Y0 = y) para todo y.(9)

Comparado con los modelos DiD y CiC revisados en la sección anterior, el modelo
UDiD introduce un conjunto de supuestos conceptualmente distintos y, en general,
menos restrictivos.

En primer lugar, la condición (7) representa una ignorabilidad latente, en el sen-
tido de que la independencia entre el tratamiento A y el resultado potencial no
tratado Y 0

t se cumple condicionalmente en una variable latente Ut. A diferencia
de los modelos previos -(2) y (6)- donde Y 0

t se especifica como una función deter-
minista de Ut, la relación entre ambos no se impone estructuralmente en (7). En
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consecuencia, el modelo UDiD relaja de forma sustantiva las restricciones funcio-
nales de los marcos DiD y CiC.

En segundo lugar, la condición (8) establece la invariancia temporal del mecanis-
mo de tratamiento, es decir, que la distribución condicional de A dado Ut permanece
estable entre periodos. Este supuesto no está presente en los modelos DiD ni CiC,
y representa una forma de estabilidad del proceso de asignación del tratamiento a
lo largo del tiempo.

Finalmente, la condición (9) impone la estabilidad temporal de la distribución
condicional de Ut dado el resultado observado entre las unidades no tratadas. Este
supuesto guarda relación con la condición de invariancia temporal del error (3) en
el modelo DiD y con la condición de estabilidad (6) en el modelo CiC, pero presenta
diferencias conceptuales relevantes: (i) la estabilidad se requiere únicamente para
el grupo no tratado, y (ii) la condición involucra el resultado observado Yt en su
argumento condicional.

Por tanto, las condiciones (3), (6) y (9) pueden entenderse como contrapartes
marginales y condicionales de un mismo principio de estabilidad, aunque no son
anidadas entre sí —del mismo modo que los supuestos de PT marginal y condicio-
nal tampoco lo son.

Al igual que DiD y CiC, UDiD permite selección en variables no observadas,
pues la distribución de Ut puede diferir entre tratados y no tratados. No obstan-
te, el modelo posee propiedades distintivas: (i) al igual que CiC, es invariante ante
transformaciones monótonas del resultado, lo cual no ocurre en DiD; (ii) no impone
estructura aditiva sobre la interacción A×Ut; (iii) admite resultados continuos, dis-
cretos o mixtos; y (iv) exige invariancia temporal del mecanismo de tratamiento, lo
que proporciona una base de identificación más robusta ante cambios en el tiempo.

5.3. Supuesto de Odds Ratio Equi-Confounding (OREC). Al igual que en
los modelos DiD y CiC, el ATT es identificable bajo el modelo UDiD. No obstante,
como señalan Tchetgen Tchetgen et al. (2024a), una condición más débil -implicada
por dicho modelo- es suficiente para garantizar la identificación.

Supuesto 4. Odds Ratio Equi-Confounding.
α∗

0(y, x) = α∗
1(y, x) para todo (y, x) ∈ S,

donde α∗
t (y, x) denota la función de razón de momios generalizada (generalized

odds ratio function, Chen, 2007[8]; Tchetgen Tchetgen et al., 2010[29]) que carac-
teriza la asociación entre el tratamiento A y el resultado potencial no tratado Y 0

t .

La función α∗
t (y, x) proporciona una medida de la magnitud del sesgo de confu-

sión en la escala del odds ratio. En particular, si α∗
t (y, x) = 1 para todo (y, x), ello

implica ausencia de asociación entre A y Y 0
t condicionalmente en X = x, es decir,

ausencia de confusión dada X. Por tanto, la igualdad α∗
0(y, x) = α∗

1(y, x) establece
que el sesgo de confusión -medido en la escala del odds ratio- es estable a lo largo
del tiempo entre los periodos t = 0 y t = 1. De ahí su denominación como supuesto
de OREC.
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Este supuesto representa una generalización multiplicativa del principio de esta-
bilidad del sesgo formulado en la escala aditiva bajo el supuesto PT. A diferencia de
este último, el OREC es invariante ante transformaciones monótonas del resultado,
lo que permite su aplicación en contextos con variables de tipo discreto, continuo o
mixto. Además, no requiere que la distribución del resultado pertenezca a la familia
exponencial, lo cual amplía sustancialmente su dominio de validez y lo convierte
en un marco unificado para la corrección del sesgo de confusión en estimaciones
causales sobre los tratados.

Si bien la condición OREC se deriva naturalmente del modelo estructural UDiD,
es importante destacar que su formulación puede expresarse directamente en tér-
minos de resultados contrafactuales, sin necesidad de hacer referencia explícita al
factor latente Ut que confunde la asociación entre el tratamiento A y el resultado
potencial no tratado Y 0

1 .

Para ilustrar este punto, considérese el supuesto de tendencias paralelas no linea-
les (Nonlinear Parallel Trends, NPT), en el cual el resultado es binario y se utiliza
la función de enlace logit. Bajo este enfoque, el supuesto NPT equivale a imponer
un modelo para el resultado en el periodo t ∈ {0, 1} de la forma

logit
{
E[Y 0

t | A = a, X = x]
}

= b0(x) + a · b1(x) + t · b2(x),
donde b0, b1 y b2 son funciones de las covariables. Bajo OREC, la asociación entre

el tratamiento A y los resultados potenciales no tratados Y 0
t se mantiene constante

en el tiempo, pero sin depender de una función de enlace específica ni de la natu-
raleza del resultado.

Así, mientras el NPT se formula dentro de un marco paramétrico particular (lo-
gístico o exponencial), el supuesto OREC constituye una condición semiparamétrica
de estabilidad del sesgo multiplicativo, válida para resultados discretos, continuos
o mixtos, y que no requiere especificar una relación funcional entre el resultado y
el tratamiento.

Más generalmente, el supuesto OREC puede interpretarse como una versión del
supuesto de PT aplicada al mecanismo de exposición extendido en la escala logit.
Tomando logaritmos en ambos lados de la igualdad definida por OREC, se obtiene
la siguiente condición:

logit
(
e∗

1(1 | y, x)
)

− logit
(
e∗

1(1 | yR, x)
)

= logit
(
e∗

0(1 | y, x)
)

− logit
(
e∗

0(1 | yR, x)
)
,

∀(y, x) ∈ S. En palabras, el cambio en los log-odds asociados con la función
de propensión extendida es constante en el tiempo para todo (y, x) ∈ S; es decir,
existe una relación paralela en los log-odds de dicha función entre los periodos.

Pr(A = 1 | Y 0
t , X) t ∈ {0, 1}.

5.4. Propiedades del enfoque UDiD. Para concluir esta sección, resumimos
las propiedades esenciales del enfoque desarrollado bajo el supuesto Odds Ratio
Equi-Confounding (OREC).
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El enfoque UDiD, fundamentado en el supuesto OREC, reúne un conjunto de pro-
piedades que lo distinguen de los modelos tradicionales en diferencias en diferencias.
En primer lugar, admite sin restricciones resultados continuos, discretos o mixtos,
evitando las limitaciones estructurales presentes en enfoques como CiC o PT en
transformaciones específicas. En segundo lugar, cuando el resultado pertenece a la
familia exponencial, OREC adquiere una interpretación natural en términos de es-
tabilidad temporal de los parámetros canónicos.

Una tercera propiedad clave es su invariancia de escala: las condiciones de identi-
ficación no dependen de transformaciones particulares del resultado, lo que elimina
la necesidad de escoger un dominio funcional “correcto”, un requisito habitual en
modelos basados en PT o NPT. Además, el marco permite la presencia de confu-
sores no observados siempre que su influencia sobre el mecanismo de tratamiento
sea estable en la escala del odds ratio.

Desde el punto de vista teórico, UDiD es plenamente no paramétrico y cuenta
con una caracterización explícita de la cota de eficiencia semiparamétrica para los
efectos del tratamiento, junto con condiciones suficientes para que el estimador
propuesto la alcance. Por combinar simultáneamente compatibilidad con diferentes
tipos de resultado, invariancia de escala, robustez frente a confusión no observada y
eficiencia semiparamétrica, el supuesto OREC configura un marco verdaderamente
universal para la estimación de efectos causales en diseños DiD, tal como se resume
en la Tabla 5.4.

Rango resultados Estimación Eficiencia Semiparamétrica Escala
Invariancia

Factor de
confuciónSupuestos R {0, 1} ATT QTT ATT QTT

PT ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

NPT ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

CiC ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

PT con log ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Copula invarianza ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Ignorabilidad secuencial ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

OREC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cuadro 1. Una comparación de enfoques para entornos de di-
ferencias en diferencias. La marca de verificación 3 indica que se
cumple un criterio bajo la suposición identificadora y las condicio-
nes adicionales requeridas por trabajos previos. La cruz 7 indica
que un criterio no se cumple.

6. Simulación

Con el fin de evaluar el comportamiento en muestras finitas del estimador propuesto
bajo el supuesto OREC, se implementó un estudio de simulación Monte Carlo en
dos escenarios: uno con resultado continuo y otro con resultado binario. En ambos
casos se construyó deliberadamente un diseño en el que la ignorabilidad condicional
falla, OREC es válido y el PT es violado, de modo que la comparación con métodos
estándar DiD sirve como prueba de estrés para el enfoque planteado.
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Diseño: resultado continuo. En el primer escenario se consideró un resultado
continuo. Para cada unidad se generaron dos covariables observadas X = (X1, X2),
con X1, X2 ∼ N (0, 1) independientes. El indicador de tratamiento A se simuló a
partir de un modelo logístico

A ∼ Ber
(

expit{0,1(X1 + X2)}
)
,

de forma que la probabilidad de tratamiento depende de las covariables. Los po-
tenciales resultados se especificaron como

Y 0
0 | (A, X) ∼ N

(
3 + 0,01

(
5 + 2X1 + 2X2

)
A + 0,1(X1 + X2), 4

)
, Y 1

0 = Y 0
0 ,

Y
(a)

1 | (A, X) ∼ N
(

3,5+0,5a+0,01
(
5+2X1+2X2

)
A+0,1(X1+X2), 1

)
, a ∈ {0, 1}.

La dependencia explícita de Y 0
t con A implica que la ignorabilidad condicional

respecto de X no se cumple. Al mismo tiempo, el sesgo de confusión puede repre-
sentarse mediante una razón de momios generalizada que permanece estable en el
tiempo, de modo que el supuesto OREC es válido con

α∗
1(y, x) = exp

{
0,01 y (5 + 2x1 + 2x2)

}
,

mientras que PT no se verifica. En este diseño el efecto medio del tratamiento sobre
los tratados en el periodo post, ATT, es igual a 0,5.

Se consideraron tamaños muestrales N ∈ {500, 1000, 1500, 2000}. Para cada réplica
se generaron los datos observados (Y0, Y1, A, X) a partir de los potenciales resulta-
dos y del mecanismo de tratamiento, y se estimaron dos cantidades:

el estimador propuesto bajo OREC, τ̂OREC, construido a partir de la función
de influencia eficiente y el esquema de cross-fitting descrito en la Sección 5.2;
un estimador DiD estándar basado en PT, τ̂PT, implementado mediante el
procedimiento de Sant’Anna y Zhao (2020) y Callaway y Sant’Anna (2021).

El desempeño de ambos estimadores se evaluó a partir de 1000 réplicas Monte Car-
lo para cada valor de N , analizando sesgo, error estándar empírico y cobertura de
intervalos de confianza al 95 %.

Diseño: resultado binario. En el segundo escenario se consideró un resultado bi-
nario, manteniendo las mismas distribuciones para las covariables y el tratamiento.
Los potenciales resultados se generaron según

Y 0
0 | (A, X) ∼ Ber

(
expit{−0,75+(1,5−0,2X1−0,2X2)A+0,1X1+0,1X2}

)
, Y 1

0 = Y 0
0 ,

Y
(a)

1 | (A, X) ∼ Ber
(

expit{0,5+(1,5−0,2X1−0,2X2)A+0,1X1+0,1X2}
)

, a ∈ {0, 1}.

Este diseño mantiene la violación de ignorabilidad condicional y, al mismo tiempo,
satisface OREC con

α∗
1(y, x) = exp

{
y (1,5 − 0,2x1 − 0,2x2)

}
,

mientras que PT vuelve a fallar. Aquí las distribuciones de Y 0
1 y Y 1

1 coinciden para
las unidades tratadas, de modo que la ATT verdadera es igual a cero. La estimación
en este caso se realizó utilizando la versión binaria del procedimiento propuesto,
que explota simplificaciones específicas de la escala Bernoulli. Se utilizaron los mis-
mos tamaños muestrales y el mismo número de réplicas que en el escenario continuo.
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Resultados principales. En ambos escenarios, el estimador basado en OREC
mostró un sesgo empírico prácticamente nulo incluso en muestras moderadas, mien-
tras que el estimador sustentado en PT exhibió sesgos sistemáticos, coherentes con
la violación deliberada de dicho supuesto. A medida que N aumenta, las desvia-
ciones estándar de τ̂OREC decrecen de forma compatible con un comportamiento
de raíz-N , y los intervalos de confianza construidos a partir de la desviación están-
dar asintótica y de procedimientos de remuestreo tipo multiplier bootstrap alcanzan
coberturas cercanas al nivel nominal del 95 %. Estas evidencias empíricas son con-
sistentes con las propiedades asintóticas establecidas para el estimador eficiente
bajo el supuesto OREC y respaldan su uso en contextos donde las hipótesis de
tendencias paralelas resultan poco plausibles.

Figura 1. Resumen gráfico de los resultados de simulación. Los
paneles izquierdo y derecho muestran los resultados para los casos
con resultado continuo y binario, respectivamente. En la parte su-
perior, cada columna presenta boxplots del sesgo de los estimadores
τ̂OREC y τ̂PT para N ∈ {500, 1000, 1500, 2000}. La parte inferior
reporta, para τ̂OREC, el sesgo medio (Bias), el error estándar asin-
tótico (ASE), el error estándar empírico (ESE), el error estándar
por bootstrap (BSE) y la cobertura empírica de los intervalos de
confianza al 95 % basados en ASE y BSE. Los valores de sesgo y
errores estándar se muestran reescalados por un factor de 10.

7. Conclusiones

El análisis desarrollado muestra que los diseños DiD clásicos descansan sobre una
estructura aditiva que se vuelve frágil cuando los efectos del tratamiento son hete-
rogéneos, las trayectorias entre grupos divergen antes o después de la intervención,
o el resultado está restringido a un soporte acotado. En ese entorno, el supuesto
de tendencias paralelas deja de ser una simplificación técnica y pasa a operar como
una restricción estructural fuerte: condiciona la escala en la que debe medirse el
resultado, limita el análisis a parámetros promedio y ofrece pocas garantías cuando
el interés se desplaza hacia efectos distribucionales o cuantilísticos.
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El marco OREC–UDiD desplaza el foco desde la igualdad de tendencias aditi-
vas hacia la estabilidad temporal de la asociación entre tratamiento y resultado
potencial en la escala del odds ratio generalizado. Esa reparametrización permite
trabajar con resultados continuos, discretos o mixtos, mantiene la identificación
frente a transformaciones monótonas del resultado y admite la presencia de con-
fusión no observada siempre que su efecto actúe de forma estable en dicha escala.
Bajo estas condiciones, parámetros como el ATT y el QTT se obtienen a partir
de expresiones no paramétricas en las que el contrafactual de los tratados queda
caracterizado de manera explícita.

Desde la perspectiva estadística, la derivación de la función de influencia eficien-
te y la construcción de un estimador basado en cross-fitting permiten combinar
estimación flexible de densidades, razones de densidad y regresiones de resultado
con propiedades asintóticas de raíz–(n). La estructura de sesgo mixto garantiza que
la consistencia y la normalidad asintótica se preservan aun cuando no todos los
componentes auxiliares convergen a la misma velocidad, siempre que un subcon-
junto suficiente de ellos lo haga a tasas adecuadas. Las simulaciones con resultados
continuos y binarios confirman este comportamiento: el estimador OREC mantiene
sesgos cercanos a cero, errores estándar acordes con la teoría y coberturas próximas
al nivel nominal precisamente en configuraciones donde los estimadores basados en
PT se desalinean de manera sistemática.

El marco abre varias extensiones naturales. Por un lado, la posibilidad de identi-
ficar QTT y otros funcionales distribucionales sugiere trabajar con curvas completas
de efectos —por ejemplo, perfiles de impacto a lo largo de la distribución del in-
greso, del riesgo o de la productividad— en lugar de concentrarse únicamente en
promedios. Por otro lado, la presencia explícita de factores latentes y de estructuras
de dependencia en el modelo de odds ratio ofrece un punto de encuentro con los
modelos de ecuaciones estructurales (SEM), en los que tratamiento, covariables,
resultados potenciales y confusores no observados pueden representarse de manera
conjunta. Extender OREC–UDiD a paneles de múltiples periodos, patrones de tra-
tamiento más generales y versiones relajadas del supuesto de equi-confusión —por
ejemplo, permitiendo relaciones del tipo α1 = φ(α0)— abre un espacio promete-
dor donde la inferencia causal semiparamétrica y la modelación estructural pueden
dialogar de forma más estrecha, manteniendo siempre visibles los supuestos que
sostienen la interpretación causal de los parámetros estimados.
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MODELACIÓN ESPACIAL Y VALIDACIÓN GEOESTADÍSTICA
DE ESTIMACIONES SATELITALES CHIRPS CON DATOS DE
ESTACIONES TERRESTRES EN CUENCAS HIDROGRÁFICAS

DE HONDURAS

KEVIN FERNANDO VASQUEZ ZERONY1 ANDRES FARALL2

Resumen. La modelación hidrológica depende en gran medida de una
representación precisa de la precipitación, variable clave en la gestión
del agua, la planificación territorial y la mitigación de desastres natu-
rales. En Honduras, su análisis enfrenta limitaciones debido a la baja
densidad, distribución irregular y discontinuidad de la red pluviométri-
ca nacional. En este contexto, los datos satelitales CHIRPS (Climate
Hazards Group InfraRed Precipitation with Station data) ofrecen una
alternativa valiosa al proporcionar cobertura casi global desde 1981 con
resolución espacial de 0.05° (5 km); sin embargo, sus estimaciones pre-
sentan sesgos sistemáticos que requieren corrección local.
Este estudio tiene como objetivo evaluar y corregir el sesgo de las
estimaciones CHIRPS frente a datos de estaciones terrestres y,
posteriormente, modelar su distribución espacial mediante el uso
de técnicas geoestadísticas avanzadas aplicadas en las principales cuen-
cas hidrográficas de Honduras durante el período 1981–2023. Para la
corrección de sesgos se implementan métodos estadísticos reco-
nocidos en la literatura, como el Escalamiento Lineal (Linear
Scaling), la Transformación de Potencia (Power Transforma-
tion) y el Mapeo de Cuantiles (Quantile Mapping), empleados
en estudios previos de validación de productos CHIRPS en
África y América Central. Posteriormente, se emplean tres mé-
todos geoestadísticos para estimar la precipitación en puntos
de difícil acceso o en zonas sin pluviómetros: el Kriging Ordina-
rio (OK), que considera la autocorrelación espacial; el Kriging
Universal (UK), que incorpora covariables topográficas; y el
Co-Kriging, que combina información satelital y observaciones
terrestres aprovechando su correlación cruzada. La validación se
realiza mediante métricas estadísticas como r , R2, NSE, RMSE, MAE
y sesgo, utilizando validación cruzada con datos de estaciones meteoro-
lógicas nacionales. Los resultados permitirán generar campos de preci-
pitación corregidos que mejoran la modelación hidrológica, el balance
hídrico y el diseño de infraestructura hidráulica, fortaleciendo la gestión
integrada de los recursos hídricos en Honduras.

Fecha: 19 Agosto 2025.
1
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Abstract. Hydrological modeling strongly depends on an accurate re-
presentation of precipitation, a key variable for water resources mana-
gement, land-use planning, and disaster risk reduction. In Honduras,
precipitation analysis is constrained by the low density, irregular dis-
tribution, and discontinuity of the national rain-gauge network. In this
context, CHIRPS (Climate Hazards Group InfraRed Precipitation with
Station data) provides a valuable near-global record since 1981 at 0.05°
(5 km) spatial resolution; however, its estimates exhibit systematic bia-
ses that require local correction.
This study aims to evaluate and correct the bias of CHIRPS
estimates against ground stations and, subsequently, model
their spatial distribution using advanced geostatistical techniques
across the main Honduran watersheds for 1981–2023. For bias correc-
tion, well-established statistical approaches from the literatu-
re are implemented—Linear Scaling, Power Transformation,
and Quantile Mapping—as used in previous CHIRPS valida-
tion studies in Africa and Central America. Afterwards, three
geostatistical methods are applied to estimate precipitation
in ungauged or hard-to-access areas: Ordinary Kriging (OK),
which models spatial autocorrelation; Universal Kriging (UK),
which incorporates topographic covariates; and Co-Kriging,
which merges satellite estimates with ground observations by
exploiting cross-correlation. Validation is performed using R2, NSE,
RMSE, and bias through cross-validation with national meteorological
stations. The results yield spatially corrected precipitation fields that en-
hance hydrological modeling, water balance estimation, and hydraulic
infrastructure design, strengthening integrated water-resources manage-
ment in Honduras.

Keywords: Geostatistics, Kriging, Co-Kriging, CHIRPS, satellite precipitation,
validation, Honduras.
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1. Introducción

La precipitación es un componente central del ciclo hidrológico por su impacto
directo en la disponibilidad de agua, la agricultura, la planificación urbana y la
reducción del riesgo de desastres. En Honduras, la complejidad topográfica y la
alta variabilidad climática exigen información espacial y temporalmente consistente;
sin embargo, la red pluviométrica nacional presenta baja densidad, distribución
irregular y series incompletas, lo que limita la caracterización confiable de la lluvia.

Ante estas limitaciones, los productos satelitales CHIRPS (Climate Hazards
Group InfraRed Precipitation with Station data) constituyen una fuente conti-
nua desde 1981 (0.05°; 5 km), útil para complementar la observación terrestre. No
obstante, sus estimaciones pueden exhibir sesgos sistemáticos en regiones con topo-
grafía compleja como Honduras, por lo que se requiere su validación y ajuste antes
de su uso en aplicaciones hidrológicas e ingenieriles.

En este estudio, la corrección del sesgo entre CHIRPS y las observaciones de
estaciones terrestres se realiza mediante métodos estadísticos reconocidos, tales co-
mo el Escalamiento Lineal (Linear Scaling), la Transformación de Potencia (Power
Transformation) y el Mapeo de Cuantiles (Quantile Mapping), con el fin de obte-
ner estimaciones de precipitación ajustadas localmente. Posteriormente, las técnicas
geoestadísticas Kriging Ordinario (OK), Kriging Universal (UK) y Co-Kriging se
emplean para representar la estructura espacial de la precipitación y estimar va-
lores en zonas sin pluviómetros o de difícil acceso, integrando información
satelital y terrestre.
Objetivo general: Validar y evaluar el sesgo de las estimaciones de precipitación
CHIRPS frente a estaciones terrestres, aplicar métodos de corrección estadís-
tica y, posteriormente, modelar espacialmente la precipitación corregida
mediante técnicas geoestadísticas (OK, UK y Co-Kriging) en las principales cuen-
cas hidrográficas de Honduras (1981–2023).

Objetivos específicos:

1. Evaluar el desempeño del producto CHIRPS frente a los datos de estaciones
terrestres mediante indicadores estadísticos de ajuste y precisión, como el co-
eficiente de correlacion de pearson (r), y de determinación (R2), la eficiencia
de Nash–Sutcliffe (NSE), la raíz del error cuadrático medio (RMSE), (MAE)
y el sesgo medio, utilizando validación cruzada.

2. Aplicar métodos estadísticos de corrección de sesgo tales como; Escalamien-
to Lineal, Transformación de Potencia y Mapeo de Cuantiles.para ajustar
las estimaciones de precipitación CHIRPS a las observaciones terrestres y
obtener series corregidas localmente.

3. Modelar la estructura espacial de la precipitación corregida mediante téc-
nicas geoestadísticas (Kriging Ordinario, Kriging Universal y Co-Kriging)
para estimar valores en zonas sin pluviómetros o de difícil acceso,
evaluando el aporte de covariables topográficas en la interpolación.

4. Generar mapas continuos de precipitación corregida y evaluar su desempeño
en la mejora de la modelación hidrológica, el balance hídrico y el diseño de
obras hidráulicas a escala de cuenca.

Estas herramientas permiten generar campos de precipitación corregidos, espa-
cialmente continuos y más representativos de la realidad climática del territorio
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hondureño. De esta manera, el estudio contribuye a mejorar la calidad y cobertura
espacial de la información de lluvia, fortaleciendo la toma de decisiones en gestión
del agua, el diseño de infraestructura hidráulica —como puentes y drenajes— y
los sistemas de alerta temprana ante eventos extremos. Asimismo, proporciona una
herramienta técnica robusta para estimar la precipitación en zonas sin observacio-
nes directas o de difícil acceso, ampliando la cobertura de datos y optimizando la
planificación y gestión sostenible de los recursos hídricos del país.

2. Justificación

En Honduras, los estudios hidrológicos y de ingeniería civil dependen en gran
medida de la información pluviométrica para estimar caudales, diseñar drenajes,
puentes y sistemas de control de inundaciones. Sin embargo, la red nacional de
estaciones meteorológicas presenta limitaciones históricas en cobertura, manteni-
miento y continuidad de datos, lo que genera vacíos espaciales y temporales que
reducen la representatividad espacial y la precisión de los modelos hidrológicos.

La ausencia de registros consistentes en muchas zonas del país ha obligado a los
profesionales a recurrir a estimaciones generalizadas o valores promedios regionales,
reduciendo la precisión de los diseños hidráulicos y aumentando la incertidumbre
en la gestión y planificación de los recursos hídricos. Frente a esta situación, los pro-
ductos satelitales como CHIRPS (Climate Hazards Group InfraRed Precipitation
with Station data) representan una herramienta valiosa para suplir esta carencia,
pues ofrecen registros continuos desde 1981 con una resolución espacial de 0.05° (5
km). No obstante, estas fuentes presentan sesgos sistemáticos que deben corregir-
se mediante métodos estadísticos especializados, tales como el Escalamiento Lineal
(Linear Scaling), la Transformación de Potencia (Power Transformation) y el Mapeo
de Cuantiles (Quantile Mapping), antes de su aplicación en el ámbito técnico.

En este contexto, la validación de los datos CHIRPS y su posterior modelación
espacial mediante técnicas geoestadísticas constituyen una alternativa metodológi-
ca robusta para mejorar la calidad y cobertura de la información de precipitación.
A través de métodos como el Kriging Ordinario, Kriging Universal y Co-Kriging,
es posible integrar información satelital con observaciones de estaciones terrestres
y realizar interpolaciones en puntos donde no existen pluviómetros o en zonas de
difícil acceso, lo que permite estimar la precipitación en áreas sin mediciones direc-
tas y generar registros históricos continuos en todo el territorio nacional.

El producto CHIRPS fue desarrollado por el Climate Hazards Group de la Uni-
versity of California, Santa Barbara (UCSB), en colaboración con el United States
Geological Survey (USGS/EROS), con el propósito de apoyar el sistema de alerta
temprana para sequías del Famine Early Warning Systems Network (FEWS NET)
de USAID. El conjunto de datos fue presentado oficialmente por [Funk et al., 2015]
en la revista Scientific Data, y constituye un registro de precipitación cuasi-global
(50◦S – 50◦N), con resolución de 0,05◦ y disponibilidad desde 1981.

Este trabajo se enmarca dentro de la línea de investigación Estadística Espa-
cial de la orientación en Estadística de la Maestría en Matemáticas de la UNAH,
ya que utiliza herramientas de análisis espacial para representar y modelar fenó-
menos geográficos relacionados con la precipitación. De acuerdo con los ejes de
investigación institucionales, este estudio se vincula con los temas prioritarios de

154



la infraestructura y desarrollo territorial, al generar información de soporte
para el diseño de obras hidráulicas y planificación urbana; y con el eje de cambio
climático y vulnerabilidad, al mejorar la comprensión de la variabilidad espacial
de la lluvia y su impacto sobre la gestión de los recursos hídricos.

Finalmente, el estudio se justifica porque permitirá disponer de una base de datos
de precipitación corregida mediante métodos estadísticos y modelada espacialmen-
te con técnicas geoestadísticas, adecuada para su uso en proyectos de modelación
hidrológica, balance hídrico y diseño de infraestructura hidráulica. Además, aporta-
rá una herramienta estadística replicable que podrá aplicarse en otras regiones del
país y de Centroamérica, contribuyendo al fortalecimiento de la gestión del agua,
la adaptación al cambio climático y la planificación territorial sustentable.

3. Antecedentes

El uso de datos satelitales para la estimación y validación de la precipitación ha
cobrado gran relevancia en los estudios hidrológicos de América Latina, especial-
mente en regiones con limitada cobertura de estaciones meteorológicas. Entre los
productos más utilizados se encuentra CHIRPS (Climate Hazards Group InfraRed
Precipitation with Station data), Estos datos han sido aplicados con éxito en la ca-
racterización de lluvias, análisis de sequías y validación climática en contextos de
topografía compleja. Sin embargo, aunque su uso se ha expandido considerablemen-
te en los últimos años, la precisión y aplicabilidad de este producto puede variar
según las condiciones climáticas, fisiográficas y el nivel de densidad de estaciones
disponibles en cada región. Por ello, resulta fundamental revisar antecedentes cien-
tíficos que evalúen su desempeño bajo diferentes contextos geográficos, climáticos
y metodológicos.

El conjunto de datos CHIRPS (Climate Hazards Group InfraRed Precipitation
with Stations) fue desarrollado como una herramienta para el monitoreo de sequías
y cambios ambientales sobre superficie terrestre. Recientes esfuerzos de validación
en Sudamérica han evaluado su capacidad para reproducir los principales patrones
espaciales y temporales de la precipitación. No obstante, se ha avanzado poco en
determinar su capacidad para evaluar condiciones húmedas y secas, particularmente
en áreas con registros pluviométricos escasos. En este estudio, se investigó el desem-
peño de CHIRPS para monitorear eventos húmedos y secos en la región semiárida
del centro-oeste de Argentina. Mediante el Índice Estandarizado de Precipitación
(SPI), se comparó la base de datos CHIRPS con registros provenientes de 49 esta-
ciones meteorológicas durante el período 1987–2016. Los resultados indicaron que
CHIRPS reprodujo adecuadamente la variabilidad temporal del SPI en múltiples
escalas (1, 3 y 6 meses), especialmente en la región dominada por precipitación de
temporada cálida. Sin embargo, se observó una sobrestimación considerable en la
precipitación estacional en la región dominada por lluvias de temporada fría, lo que
introduce errores reflejados en el desempeño de CHIRPS en el sector occidental
del área de estudio. Además, aunque CHIRPS reprodujo con precisión la frecuen-
cia de clases húmedas y secas en escalas superiores a un mes, el sesgo húmedo
(wet bias) produjo una subestimación de la frecuencia de valores cero, afectando
la clasificación de condiciones extremas en eventos secos (1998) y húmedos (2016).
Los autores concluyeron que CHIRPS es una herramienta adecuada para la eva-
luación de condiciones secas y húmedas en escalas superiores a un mes, pudiendo
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apoyar procesos de toma de decisiones en agencias hidrometeorológicas regionales
([Rivera et al., 2019]).

De manera similar El estudio [Al-Shamayleh et al., 2024]) evaluó la capacidad
del producto CHIRPS con resolución espacial de 0.05° para estimar precipitación
mensual y anual en la cuenca Wala, Jordania, durante el período 1987–2017 me-
diante una comparación punto-a-píxel y utilizando once índices extremos recomen-
dados por el ETCCDI. Los resultados mostraron una correlación moderada en la
estimación mensual (r = 0.50–0.73), pero un bajo desempeño en la detección de
eventos extremos, con tendencia a sobreestimar valores bajos y subestimar valores
altos de precipitación, especialmente en años hidrometeorológicos extremos. Ade-
más, el producto presentó subestimación en indicadores CDD, CWD, R10, R20 y
R30, mientras que sobreestimó R95p, R99p y Rx1day, lo cual evidencia limitacio-
nes en la representación de extremos pluviométricos. La prueba de Wilcoxon indicó
falta de equivalencia estadística con los registros observados, concluyendo que es
necesaria una corrección de sesgo antes de emplear CHIRPS en análisis extremos o
aplicaciones hidrológicas.

En Honduras, ([Pichardo, 2024]) desarrolló un estudio pionero titulado “Valida-
ción de precipitación en la subcuenca del Lago de Yojoa: datos satelitales versus
observados”, donde comparó los productos CHIRPS v2.0 y CMORPH con ob-
servaciones de diez estaciones hidroclimatológicas de la Empresa Nacional de Ener-
gía Eléctrica (ENEE). El estudio reportó un bajo ajuste en la escala diaria (R2
entre 0.02 y 0.07), pero un desempeño considerablemente mejor a nivel mensual
(R2 entre 0.6 y 0.85), destacando una fuerte correlación (( ρ > 0,85 )) y eficiencia
de Nash-Sutcliffe (NSE>0.70) en estaciones como El Mochito y Santa Elena. Para
la corrección de sesgos, se aplicaron los métodos de Escalamiento Lineal (LS) y
Transformación de Potencias (PT), logrando ajustar los datos de CHIRPS a las
observaciones en tierra y realizar relleno de series históricas de precipitación entre
1981–2023. Aunque el estudio demostró la validez del uso de CHIRPS a escala men-
sual, no incorporó técnicas geoestadísticas ni análisis espacial continuo, limitándose
al ámbito local de la subcuenca del Lago de Yojoa

([Bollat Flores, 2023]) desarrolló en Guatemala un análisis comparativo de datos
CHIRPS con registros pluviométricos locales en el departamento de Chiquimula,
aplicando interpolación espacial mediante Kriging Ordinario. Su investiga-
ción logró una correspondencia espacial del 80 % y una correlación positiva de 0.84,
demostrando la eficacia del Kriging para ajustar las diferencias entre estimaciones
satelitales y observaciones de superficie en regiones montañosas del corredor seco
centroamericano. Este enfoque permitió generar mapas continuos de precipitación
corregida y evidenció el potencial de las técnicas geoestadísticas para mejorar la
precisión de los productos satelitales.

De Manera complementaria En Ghana ([Atiah et al., 2023]), donde la red de
pluviómetros presenta un continuo deterioro, se evaluó el desempeño del produc-
to satelital CHIRPS-v2 mediante un proceso de corrección de sesgo utilizando el
enfoque Bias Correction and Spatial Disaggregation (BCSD). El estudio analizó el
impacto de dicha corrección sobre la identificación de la estacionalidad y de los
índices extremos de precipitación. Los resultados mostraron que, tras la aplicación
del método BCSD, los patrones estacionales y anuales fueron mejor representados
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y se obtuvo una mayor correspondencia con los datos de estaciones, especialmente
en las fechas de inicio y fin de la temporada lluviosa. El estudio concluye que el
enfoque BCSD mejora tanto la estimación de la precipitación como la identifica-
ción de índices de estacionalidad, sugiriendo su aplicación en la corrección de otros
productos satelitales utilizando registros históricos de largo plazo.

Los antecedentes revisados conforman una base conceptual y metodológica rele-
vante para el presente estudio; sin embargo, también evidencian brechas investiga-
tivas tanto en la escala de aplicación como en la combinación metodológica. A nivel
nacional, Pichardo (2024) validó los datos CHIRPS únicamente a escala local sin
incorporar modelación espacial, mientras que Bollat Flores (2023) aplicó Kriging en
Guatemala para la interpolación de precipitación sin considerar procesos de correc-
ción estadística previos. De manera complementaria, estudios internacionales han
demostrado que CHIRPS requiere una corrección de sesgo antes de su aplicación
hidrológica o espacial (Rivera et al., 2019; Atiah et al., 2023; Al-Shamayleh et al.,
2024), particularmente para la representación de eventos extremos y estacionalidad.

En función de estas brechas, la presente investigación propone una ampliación
metodológica a escala nacional en Honduras, integrando dos etapas complementa-
rias: (1) corrección estadística del sesgo mediante Linear Scaling, Power Transfor-
mation y Quantile Mapping; y (2) modelación espacial mediante Kriging Ordinario,
Kriging Universal y Co-Kriging, combinando datos satelitales CHIRPS con obser-
vaciones de estaciones terrestres. En el caso del Co-Kriging, se incorporarán co-
variables físico-ambientales espacialmente continuas tales como topografía (DEM),
temperatura del aire, velocidad/dirección del viento, distancia al litoral u otras
variables climáticas relacionadas, siempre que presenten correlación significativa
con la precipitación y mejoren la capacidad predictiva del modelo. Este enfoque
permitirá obtener estimaciones corregidas localmente y generar una representación
espacial continua en zonas sin cobertura instrumental, fortaleciendo la disponibili-
dad de información pluviométrica para aplicaciones hidrológicas, gestión de riesgos
y diseño de infraestructura hidráulica en Honduras.

4. MARCO TEORICO

4.1. Fuentes de informacion y Datos utilizados.

4.1.1. Área de estudio. El estudio se desarrollará en las principales cuencas hi-
drográficas de Honduras, las cuales presentan variaciones espaciales y temporales
significativas en la precipitación debido a características topográficas, climáticas y
oceánicas. La presencia de cadenas montañosas, valles intermontanos, planicies cos-
teras y la influencia tanto del océano Pacífico como del mar Caribe genera gradientes
pluviométricos marcados, lo que requiere integrar datos satelitales y observaciones
terrestres mediante técnicas estadísticas y espaciales.

4.1.2. Datos satelitales (CHIRPS-v2). Se utilizará el producto satelital Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS-v2), el cual inte-
gra estimaciones infrarrojas con información de estaciones meteorológicas mediante
un proceso de interpolación inteligente, con resolución espacial de 0,05◦ (aproxima-
damente 5 km) y cobertura temporal desde 1981 hasta la actualidad, lo que permite
construir un registro histórico de alta continuidad espacial.
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El producto CHIRPS fue desarrollado por el Climate Hazards Group de la Uni-
versity of California, Santa Barbara (UCSB) en colaboración con el United States
Geological Survey (USGS/EROS), con el propósito de apoyar el sistema de alerta
temprana ante sequías del Famine Early Warning Systems Network (FEWS NET)
de USAID. El conjunto de datos fue presentado oficialmente por ([Funk et al., 2015])
en la revista Scientific Data, y constituye un registro de precipitación cuasi-global
(50°S – 50°N), con una resolución de 0,05◦ y disponibilidad desde 1981, lo cual lo
convierte en una fuente adecuada para estudios hidrológicos en regiones con limi-
tada cobertura instrumental.

4.1.3. Datos de estaciones meteorológicas terrestres. Para la comparación, valida-
ción y corrección del sesgo se utilizarán registros provenientes de estaciones meteo-
rológicas ubicadas dentro de las cuencas de estudio. En Honduras, la disponibilidad
y densidad espacial de estaciones es limitada, especialmente en zonas rurales, mon-
tañosas y de difícil acceso. Además, una parte considerable de las estaciones sólo
cuentan con registros mensuales y presentan lagunas temporales, periodos de inac-
tividad y series históricas incompletas, lo cual dificulta su uso directo en análisis
hidrológicos detallados. Por esta razón, se vuelve necesario complementar estas me-
diciones con productos satelitales y aplicar técnicas de corrección estadística antes
de realizar la modelación espacial.

4.1.4. Covariables ambientales. Con el propósito de mejorar la representación es-
pacial de la precipitación, se evaluará la incorporación de covariables físico-ambientales
en el modelo de Co-Kriging, siempre que estas demuestren correlación estadística
significativa y coherencia físico-climática. Entre las variables candidatas se consi-
deran:

Elevación y pendiente (DEM),
Temperatura del aire superficial,
Distancia al litoral,
Velocidad y dirección del viento,
Índices de vegetación o humedad del suelo.

La decisión de integrar cada covariable se basará en análisis estadístico preliminar
y revisión de literatura con el fin de optimizar la capacidad predictiva y estabilidad
del modelo.

4.2. Metodología. La metodología propuesta se estructura en cuatro fases prin-
cipales: (i) preparación y depuración de los datos disponibles, (ii) comparación es-
tadística punto–píxel entre observaciones terrestres y estimaciones satelitales, (iii)
aplicación de técnicas estadísticas de corrección de sesgo reportadas en la litera-
tura científica, y (iv) modelación espacial mediante métodos geoestadísticos. El
propósito de este enfoque metodológico es integrar información satelital y regis-
tros provenientes de estaciones meteorológicas, con el fin de generar estimaciones
continuas y espacialmente coherentes de precipitación corregida en las principales
cuencas hidrográficas de Honduras. Cabe señalar que estas etapas representan un
esquema metodológico planificado para su implementación en el desarrollo de la
presente investigación.
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4.2.1. Fase I: Preparación y depuración de datos. En esta etapa se realizó la reco-
pilación, estandarización y verificación de calidad de los datos satelitales y terres-
tres. Las actividades consideradas se detallan a continuación:

1. Descarga y organización de la serie satelital CHIRPS-v2 para el periodo
definido en el estudio.

2. Obtención de los registros de precipitación provenientes de estaciones me-
teorológicas ubicadas dentro de las cuencas seleccionadas.

3. Aplicación de control de calidad de datos mediante verificación de valores
extremos, duplicados, discontinuidades temporales y consistencia interna.

4. Ajuste de la resolución temporal entre ambas fuentes (mensual o diaria según
disponibilidad).

5. Unificación de formatos, unidades y estructuras de archivo para su trata-
miento estadístico.

4.2.2. Fase II: Comparación estadística punto-píxel. En la fase de evaluación se
propone utilizar indicadores estadísticos para cuantificar el ajuste entre la precipi-
tación estimada por CHIRPS-v2 y las observaciones en estaciones meteorológicas.
En particular, se emplearán el Sesgo (BIAS), el Error Absoluto Medio (MAE), la
Raíz del Error Cuadrático Medio (RMSE), el coeficiente de correlación de Pearson
(r) y la eficiencia de Nash–Sutcliffe (NSE). Las expresiones propuestas se describen
a continuación.

Sesgo medio (BIAS)
Sea {xi}n

i=1 la secuencia de valores observados y sea {yi}n
i=1 la secuencia corres-

pondiente de valores estimados. El sesgo medio (BIAS) se define como

(4.1) BIAS = 1
n

n∑

i=1
(yi − xi).

Un valor positivo de BIAS indica una sobreestimación sistemática de los valores
estimados respecto a los observados, mientras que un valor negativo indica una sub-
estimación sistemática. En el caso ideal, un valor de BIAS cercano a cero sugiere
ausencia de sesgo promedio.

Error Absoluto Medio (MAE)
Sea {xi}n

i=1 la secuencia de valores observados y sea {yi}n
i=1 la secuencia corres-

pondiente de valores estimados. El error absoluto medio (MAE) se define como

(4.2) MAE = 1
n

n∑

i=1
| yi − xi |.

El MAE mide la magnitud promedio del error entre las observaciones y las esti-
maciones, sin considerar su signo.

Raíz del Error Cuadrático Medio (RMSE)
Sea {xi}n

i=1 la secuencia de valores observados y sea {yi}n
i=1 la secuencia co-

rrespondiente de valores estimados. La raíz del error cuadrático medio (RMSE) se
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define como

(4.3) RMSE =

√√√√ 1
n

n∑

i=1
(yi − xi)2.

El RMSE penaliza con mayor peso las discrepancias grandes entre estimaciones
y observaciones y constituye una medida estándar de la precisión de un modelo.
Interpretación:

Un RMSE cercano a cero indica un buen ajuste entre los valores estimados
y observados.
Un RMSE elevado señala una mayor discrepancia entre ambos conjuntos
de valores.
El RMSE conserva las mismas unidades que la variable analizada.

Coeficiente de correlación de Pearson (r)
Sea {xi}n

i=1 la secuencia de valores observados y sea {yi}n
i=1 la secuencia corres-

pondiente de valores estimados. Denote por

x̄ = 1
n

n∑

i=1
xi, ȳ = 1

n

n∑

i=1
yi

las medias respectivas.
El coeficiente de correlación lineal de Pearson se define como

(4.4) r =
∑n

i=1(yi − ȳ)(xi − x̄)√∑n
i=1(yi − ȳ)2

√∑n
i=1(xi − x̄)2

.

Este coeficiente mide el grado de asociación lineal entre ambas series.
Interpretación:

r cercano a 1 indica una fuerte relación lineal positiva.
r cercano a −1 indica una fuerte relación lineal negativa.
r cercano a 0 sugiere ausencia de relación lineal.

Eficiencia de Nash–Sutcliffe (NSE)
Sea {xi}n

i=1 la secuencia de valores observados y sea {yi}n
i=1 la secuencia corres-

pondiente de valores estimados. Denote por

x̄ = 1
n

n∑

i=1
xi

la media de los valores observados. La eficiencia de Nash–Sutcliffe se define como

(4.5) NSE = 1 −
∑n

i=1(xi − yi)2
∑n

i=1(xi − x̄)2 .

El NSE evalúa la capacidad de un modelo para reproducir los valores observa-
dos, comparándolo con el desempeño obtenido al usar la media observada como
estimador.
Interpretación:

Valores de NSE cercanos a 1 indican un desempeño alto.
Valores de NSE cercanos a 0 sugieren que el modelo no mejora respecto a
usar la media de los datos observados.
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Valores de NSE negativos indican que el modelo tiene un desempeño peor
que la media observada.

4.2.3. Fase III: Corrección estadística del sesgo. Con el propósito de ajustar la
serie satelital a las condiciones reales medidas por estaciones terrenas, se aplicarán
tres métodos de corrección estadística: Linear Scaling (LS), Power Transformation
(PT) y Quantile Mapping (QM). A continuación, se describen las expresiones ma-
temáticas de cada técnica.

Método Linear Scaling (LS). Sea {x(t)} la serie de valores observados y sea {y(t)}
la serie correspondiente de valores estimados para cada tiempo t. Denote por

x̄ = 1
T

T∑

t=1
x(t), ȳ = 1

T

T∑

t=1
y(t)

las medias respectivas. El método Linear Scaling corrige cada valor estimado me-
diante el factor

(4.6) ycorr(t) = y(t) x̄

ȳ
.

Este método aplica un factor multiplicativo constante basado en la razón entre la
media observada y la media estimada. Es adecuado cuando el sesgo es proporcional
y se manifiesta principalmente en la magnitud promedio de la serie.
Interpretación de las variables:

ycorr(t): valor corregido en el tiempo t.
y(t): valor estimado en el tiempo t.
x̄: media de la serie observada.
ȳ: media de la serie estimada.

(b) Método Power Transformation (PT).

(4.7) Pcorr(t) = (Psat(t))λ

Este procedimiento ajusta la distribución mediante una transformación potencial
controlada por el parámetro λ, modificando la asimetría y mejorando la represen-
tación de valores extremos.

Donde:
Pcorr(t): valor corregido de precipitación en el tiempo t
Psat(t): valor satelital en el tiempo t
λ: parámetro de transformación obtenido mediante calibración estadística

(c) Método Quantile Mapping (QM).

(4.8) Pcorr(t) = F −1
obs
(
Fsat

(
Psat(t)

))

Este método realiza la corrección mediante el emparejamiento de cuantiles entre
las distribuciones satelital y observada, logrando ajustar no sólo la media y la
varianza, sino la forma completa de la distribución.
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Donde:
Pcorr(t): valor corregido para el tiempo t
Psat(t): valor satelital estimado para el tiempo t
Fsat(·): función de distribución acumulada (CDF) del satélite
F −1

obs(·): función inversa de la CDF de las observaciones

4.2.4. Fase IV: Modelación espacial mediante geoestadística. Posteriormente, se
aplicarán métodos geoestadísticos con el fin de estimar la distribución espacial con-
tinua de la precipitación corregida. El procedimiento comenzó con el cálculo del
semivariograma experimental y posteriormente se utilizaron los métodos de Kri-
ging Ordinario (OK), Kriging Universal (UK) y Co-Kriging (CoK).

A continuacion se describen algunos Fundamentos teóricos de la dependencia
espacial:
En diversos fenómenos naturales, las variables de interés se observan a través del
tiempo, del espacio o en una combinación espacio-temporal. Esta característica
implica que su análisis no puede abordarse únicamente mediante los métodos tradi-
cionales de la estadística clásica, pues los supuestos que dichos métodos requieren
especialmente el de independencia entre observaciones rara vez se cumplen en estos
casos.

En el ámbito espacial, este comportamiento ha sido ampliamente documentado.
La denominada primera ley de la Geografía, atribuida a Waldo Tobler ([Tobler, 1970])
, establece que “todo está relacionado con todo lo demás, pero las cosas cercanas
están más relacionadas que las cosas distantes”. Esta afirmación resume el princi-
pio fundamental de la autocorrelación espacial, según el cual las observaciones
geográficamente próximas tienden a presentar valores similares. En consecuencia,
los datos espaciales no son independientes: cada medición está influenciada por su
entorno, y en procesos multivariados puede existir además correlación cruzada
entre distintas variables medidas en un mismo espacio geográfico.

Por ello, el análisis estadístico de fenómenos espaciales requiere métodos que
incorporen explícitamente esta estructura de dependencia. La estadística espacial
y espacio-temporal constituye el marco teórico que permite describir, modelar y
predecir procesos que varían en el territorio, proporcionando herramientas para:

estimar valores en lugares sin observaciones directas,
caracterizar cómo cambia la relación entre puntos conforme aumenta la dis-
tancia,
extender los modelos de regresión al caso en que las observaciones están
correlacionadas espacialmente,
analizar patrones de ocurrencia y variación de fenómenos geográficos.

Este enfoque es indispensable en estudios hidrológicos y climáticos, donde varia-
bles como la precipitación presentan dependencia espacial marcada y estructuras de
correlación complejas. En este trabajo, dicha dependencia constituye un elemento
central, ya que la construcción de campos continuos y coherentes de precipitación
corregida requiere modelos capaces de representar la autocorrelación inherente al
proceso, garantizando estimaciones más precisas y consistentes en áreas sin esta-
ciones meteorológicas.
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Definición 1 (Proceso espacio-temporal). Un proceso espacio-temporal es
un proceso estocástico denotado por

{Z(s, t) : (s, t) ∈ Ds × DT },

donde Ds ⊂ Rd representa el conjunto índice correspondiente a la ubicación espacial
s, y DT ⊂ R es el conjunto índice asociado al tiempo t. Por lo tanto, cada par (s, t)
pertenece al dominio espacio–temporal Rd × R, y el producto Ds × DT ⊂ Rd × R
constituye el dominio índice completo del proceso.

Los conjuntos Ds y DT pueden ser continuos o discretos, fijos o aleatorios, según
el fenómeno bajo estudio y el diseño de muestreo disponible. Este marco general
permite modelar variables que presentan variación simultánea en el espacio y en el
tiempo, incorporando su estructura conjunta de dependencia.

Definición 2 (Proceso espacial). Sea Z la variable de interés, y sea s la
ubicación espacial donde existe Z. Así, el proceso espacial es el proceso estocástico

{Z(s) : s ∈ Ds},

donde Ds está formado por todas las ubicaciones s y es su conjunto índice. La
ubicación espacial s puede estar en una, dos o más dimensiones. Cuando s es un
vector, al proceso espacial se le suele llamar campo aleatorio. Vease con mas detalle
en el siguiente cuadro.

ID Spatial location t
A s1 = (x1, y1) t1
B s2 = (x2, y2) t2
C s3 = (x3, y3) t3
D s4 = (x4, y4) t4
E s5 = (x5, y5) t5

Cuadro 1. Notación para las coordenadas espacio–temporales de
un proceso espacio-tiempo.

Definición 3 (Proceso temporal). Sea Z la variable de interés, y sea t el
momento del tiempo en el que ocurre Z. Así, el proceso temporal es el proceso
estocástico

{Z(t) : t ∈ DT },

donde DT ⊂ R es el conjunto de todos los tiempos y constituye su conjunto índice.
Así, tanto el proceso espacial como el proceso temporal son casos particulares

del proceso espacio–tiempo. El conjunto índice de un proceso temporal tiene una
sola dimensión. Sin embargo, uno de los objetivos principales en este caso es en-
contrar pronósticos, lo que en general difiere de los objetivos perseguidos con datos
espaciales.

Clases de datos espaciales
Los métodos estadísticos aplicados a datos espaciales varían según las características
del dominio espacial o conjunto índice Ds. A partir de estas características, surgen
tres grandes ramas de la estadística espacial: geoestadística, datos de área y
procesos espaciales puntuales.
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Geoestadística. Es el conjunto de métodos aplicados a datos espaciales con
variación continua, donde Ds es un subconjunto fijo de Rd; esto es, Ds es continuo y
fijo y Z(s) es una variable aleatoria con ubicación s, (s ∈ Ds). puede ser observada
en cualquier punto del dominio. Este enfoque es apropiado para fenómenos que
pueden considerarse como campos continuos, tales como precipitación, temperatura
o humedad del suelo.

Datos de área. Son los datos espaciales con variación espacial discreta. Ds es
un subconjunto contable y fijo de Rd; esto es, Ds es discreto y fijo y Z(s) es una
variable aleatoria con ubicación s, (s ∈ Ds).

Procesos espaciales puntuales. En esta categoría, las observaciones no se re-
gistran en puntos fijos, sino que corresponden a la ubicación donde ocurre un evento
de interés. El conjunto X es un conjunto de puntos definidos en un subconjunto
generalmente aleatorio de Rd. Estos procesos modelan fenómenos como sismos, in-
cendios, delitos o eventos biológicos registrados mediante su localización.

En este trabajo se hará énfasis en la geoestadística, debido a que la precipitación
presenta variación continua en el espacio.

Geoestadística
El valor observado en cada punto s = (xi, yi) se considera como la realización
z(s), de una variable aleatoria Z(s). En términos matemáticos, la familia de todas
estas variables aleatorias se denomina una función aleatoria, proceso estocástico
o campo aleatorio. Un campo aleatorio es caracterizado por su distribución de
probabilidad finito dimensional, es decir, la distribución de probabilidad conjunta
de un conjunto de variables Z(s1), Z(s2), . . . , Z(sn) para todo n y para todos los
puntos s1, s2, . . . , sn. Un proceso estocástico está dotado de los siguientes elementos:

Función de distribución finito dimensional. Para cualesquiera n puntos
s1, s2, . . . , sn, el vector aleatorio

Z =




Z(s1)
Z(s2)

...
Z(sn)




se caracteriza por su función de distribución n-dimensional:

Fs1,s2,...,sn
(z1, z2, . . . , zn) = P [Z(s1) ≤ z1, Z(s2) ≤ z2, . . . , Z(sn) ≤ zn].

Función de media. El momento de primer orden es la esperanza matemá-
tica definida como:

E[Z(s)] = µ(s)
A veces también llamada la función de media, la deriva o la tendencia del
proceso.

Función de varianza. La varianza o momento de segundo orden de Z(s)
respecto a µ(s) es:

σ2(s) = Var[Z(s)] = E[(Z(s) − µ(s))2]
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En general, estas funciones pueden depender de la posición s de manera
determinística.
Función de autocovarianza. La autocovarianza de un proceso espacial
Z(s) es en general una función de las ubicaciones espaciales si y sj , con
si, sj ∈ Rd, para todo i, j ∈ Z+. La covarianza Cov(Z(si), Z(sj)) se define
como:

Cov(Z(si), Z(sj)) = C(si, sj) = E[(Z(si) − µ(si))(Z(sj) − µ(sj))]
donde C(·) es una función definida positiva para garantizar una varianza de
error de predicción no negativa. Esto es, para cualquier número finito m de
ubicaciones espaciales s1, s2, . . . , sm y cualquier conjunto de números reales
{a1, a2, . . . , am} con m ∈ Z+, C debe satisfacer:

(4.9)
m∑

i=1

m∑

j=1
aiajC(si, sj) ≥ 0

Nótese que C(si, si) = Var(Z(si)) = σ2
Z .

Función de autocorrelación La autocorrelación de dos de las variables
aleatorias Z(si) y Z(sj), ρ(si, sj), definida como:

ρ(si, sj) = C(si, sj)
σ(si)σ(sj)

Es en general una función de si y sj . Esta es la función de autocorrelación
del proceso.
Función de semivarianza El semivariograma γ(si, sj) que se define como:

γ(si, sj) = 1
2 E

[
(Z(si) − Z(sj))2]

El variograma es por tanto 2γ(si, sj). Aunque, se usan ambos términos indis-
tintamente para referirse a la función γ(si, sj). Nótese que el semivariograma
estima la varianza espacial para distancias específicas, por lo tanto es una
función positiva.

Supuesto de Estacionariedad
Un proceso es estacionario, si las relaciones entre cualquier subconjunto de puntos
son iguales independientemente del lugar donde residen los puntos en el espacio. La
estacionariedad puede pensarse como la propiedad que posee la función aleatoria
de que muchas realizaciones de la misma función aleatoria proporcionan la misma
información. Se distinguen tres tipos de estacionariedad:

Estacionariedad fuerte o de primer orden: En términos de funciones
de distribución.
Estacionariedad débil o de segundo orden: En términos de los momen-
tos media y covarianza.
Estacionariedad intrínseca o de incrementos: En términos de media y
varianza de los incrementos del proceso.

Supuesto de isotropía
Si C(·) y/o γ(·) son funciones únicas de la magnitud ∥h∥, esto es,

Cov (Z(s), Z(s + h)) = C(∥h∥) y/o 1
2 Var (Z(s + h) − Z(s)) = γ(∥h∥)
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el proceso posee función de covarianza y/o semivarianza isotrópica.
La estacionariedad permite combinar pares de datos con la misma diferencia de

coordenadas, pero si además, los vectores de diferencias pueden ser reemplazados
con distancias escalares, por ejemplo una distancia euclidiana, entonces el campo
aleatorio se dice isotrópico. Esto es, la correlación entre los datos no depende de la
dirección en la que ésta se calcula.

Así, un campo aleatorio que es estacionario pero no isotrópico se desarrolla de
manera diferente según las distintas direcciones del espacio; no solo basta con co-
nocer cuánto están separados un par de puntos, sino también se necesita conocer la
orientación de dicha distancia; estos se conocen como campos aleatorios anisotró-
picos. Entonces, hay anisotropía, si la dependencia espacial entre Z(s) y Z(s + h)
es una función tanto de la magnitud como de la dirección del vector h.

En términos geométricos, la estacionariedad y la isotropía son propiedades de
invarianza; la estacionariedad es invarianza bajo traslación y la isotropía es inva-
rianza bajo rotaciones y reflexiones.

Semivariograma
El semivariograma es una función que describe cómo cambia la variabilidad espacial
de una variable conforme aumenta la distancia entre dos ubicaciones.

El semivariograma γ(h) se define como la función de varianza de la variable
incrementos, es decir:

γ(h) = 1
2 Var (Z(s + h) − Z(s))

Es por esto que, el semivariograma de un proceso estacionario de segundo orden
es de soporte compacto o tiene una asíntota en C(0) cuando se incrementa la
separación de los puntos. Si el semivariograma no se estabiliza, sino que continúa
creciendo, la varianza de la variable incrementos no es finita, pero aún puede ser al
menos intrínsecamente estacionario si cumple que:

γ(h)
∥h∥2 → 0 cuando h → ∞

Esto es, el semivariograma no debe crecer más rápido que una ecuación de segundo
grado.

Los parámetros de los cuales depende un semivariograma de un proceso estacio-
nario de segundo orden son los siguientes (ver figura 1):

Silla: Es la cota superior de la semivarianza o la asíntota superior del semiva-
riograma. Únicamente los procesos estacionarios de segundo orden tienen silla. En
estos casos la silla es C(0); también es conocida como meseta.

Rango: Es la distancia a la cual los puntos ya no se consideran correlacionados
espacialmente. Los puntos separados por una distancia inferior al rango se conside-
ran espacialmente correlacionados; observaciones espaciadas por más que el rango
se consideran independientes o al menos aproximadamente independientes. Algunos
procesos alcanzan correlación cero solo asintóticamente, mientras que otros tienen
un rango finito.

Efecto pepita: De la definición de semivariograma, se puede ver que para h = 0,
debería ocurrir que γ(h) = 0. Sin embargo, en general se presenta el comportamiento
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observado en la Figura 1, existiendo una discontinuidad en el origen, γ(h) → c0
cuando h → 0.

Figura 1. Pepita, silla y rango en presencia de estacionariedad
de segundo orden.

Como el semivariograma γ(h) es la varianza de la variable incrementos, como se
muestra en (1), un estimador muy natural es el conocido como el estimador clásico,
y consiste de la estimación de esta varianza por el método de los momentos:

γ̂(h) = 1
2|N(h)|

∑

N(h)

(Z(s + h) − Z(s))2
, h ∈ Rd,

donde
N(h) ≡ {(si, sj) : si − sj = h} .

N(h) es el conjunto de todos los pares de ubicaciones cuya separación corres-
ponde a un vector h y |N(h)| es el cardinal de N(h).

Una vez definida la estructura matemática del semivariograma y descritos sus
parámetros fundamentales (pepita, silla y rango), es necesario introducir los mode-
los teóricos que permiten ajustar el semivariograma experimental obtenido a partir
de los datos.

Los modelos teóricos son funciones válidas que cumplen las propiedades de no
negatividad y definida-positividad, y que representan distintos comportamientos de
la variabilidad espacial. Su selección es un paso esencial para la posterior aplicación
de métodos de interpolación como el Kriging. Algunos modelos capturan estructuras
suaves, otros representan comportamientos asintóticos, y algunos permiten incluso
patrones oscilatorios.

La Figura 2 ilustra varios de los modelos teóricos más
Estos modelos permiten capturar diferentes formas de dependencia espacial y se-

rán evaluados en la fase de modelación para seleccionar aquel que mejor reproduzca
la estructura observada en los datos de precipitación.
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Figura 2. Ejemplos de modelos teóricos de semivariograma.

Una vez definido y modelado el semivariograma, se cuenta con la estructura ne-
cesaria para realizar predicción espacial. Con este modelo como base, se introduce
el método de Kriging, que permite estimar valores en puntos no muestreados de
manera óptima.

Kriging
Uno de los objetivos principales del analisis estadístico de datos espaciales en

dominio continuo es la prediccion en lugares no muestreados. Así, se ha observado
el campo aleatorio

{Z(s) : s ∈ D ⊂ Rd}
en las ubicaciones s1, s2, . . . , sn y se desea predecir la variable aleatoria espacial
no observada Z(s0) con base en los valores observados z(s1), z(s2), . . . , z(sn) utili-
zando su estructura de autocorrelacion espacial. Aunque existen muchos metodos
determinísticos para obtener valores en lugares no muestreados, usar los metodos
estadísticos de prediccion espacial presentan una gran ventaja y es que ademas de
la predicción se obtiene la estimación de la varianza del error de prediccion, En
particular el predictor kriging es insesgado y de mínima varianza. Los mapas de
prediccion generados con kriging se acompañan, de los respectivos mapas de resi-
duos para poder determinar cuales zonas tienen predicciones mas precisas. Ademas,
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se usan las medidas generales para calidad de prediccion, tales como los estadísti-
cos de los residuos, el MAPE, el CME, el coeficiente de correlacion lineal entre los
valores observados y sus respectivas predicciones.

Se requiere una forma de predecir valores en puntos intermedios o en el caso de
bloques, por ejemplo, estimar el promedio sobre el bloque. La precision del predictor
usado depende de varios factores:

El numero de muestras tomadas. Debido a la existencia de autocorrelación,
los datos espacio temporales presentan redundancia. Por lo tanto, una mues-
tra de tamano n de datos independientes tiene mayor cantidad de informa-
cion que una muestra de tamaño n de datos autocorrelacionados.
La calidad de la medicion en cada punto. Aunque el parámetro conocido
como efecto pepita permite cuantificar el error de medicion, esto aumenta
la incertidumbre en el modelo de dependencia espacial y por lo tanto en la
prediccion.
Las ubicaciones de las muestras en la zona; si las muestras son tomadas de
acuerdo a un diseno de muestreo optimo los resultados son mucho mejores,
las predicciones son mas precisas ya que la varianza es menor, se evita la
redundancia espacial y ademas se optimizan los recursos.

Kriging ordinario
El kriging ordinario se usa cuando la variable es al menos estacionaria intrínseca

y tiene media constante pero desconocida. Es decir, se asume que el proceso espacial
se puede descomponer de la siguiente forma:

Z(s) = µ + e(s) s ∈ D

Donde E[Z(s)] = µ ∀s ∈ D, µ ∈ R pero es necesario estimarla y por lo tanto no
se puede trabajar directamente con la variable centrada.

E

(
n∑

i=1
λiZ(si)

)
= E(Z(s0))

Tomando esperanzas se obtiene:

n∑

i=1
λiµ = µ

De donde se concluye que para que se cumpla la propiedad de insesgamiento se
requiere que:

n∑

i=1
λi = 1

Kriging Universal
Sea el modelo geoestadístico

Z(s) = µ(s) + ε(s)
y E(ε(s)) = 0. Se conoce como kriging universal al caso en el que µ(s) es desconocida
y localmente puede expresarse como una combinacion lineal de funciones fk(s). Es
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decir, la media en general es es una combinacion lineal de términos de la forma
xpyq, p, q ∈ N. Esto es:

µ(s) =
K∑

k=1
βkfk(s) s = (x, y)

Por ejemplo, si el modelo para la media es: µ(s) = β1 + β2x + β3y

f1(s) = 1, f2(s) = x, f3(s) = y.

El predictor es el usual, y lo expresamos en términos de la media:

Z∗(s0) =
n∑

i=1
λiZ(si)

Z∗(s0) =
n∑

i=1
λi (µ(si) + ε(si))

Z∗(s0) =
n∑

i=1
λi

K∑

k=1
βkfk(si) +

n∑

i=1
λiε(si)

E(Z∗(s0)) = E

(
n∑

i=1
λi

K∑

k=1
βkfk(si)

)

Ahora, para garantizar el insesgamiento se requiere que
E(Z∗(s0) − Z(s0)) = 0

Entonces,

E

(
n∑

i=1
λiZ(si)

)
= E(Z(s0))

Así,
n∑

i=1
λiµ(si) = µ(s0)

Reemplazando la expresión de la media:
n∑

i=1
λi

K∑

k=1
βkfk(si) =

K∑

k=1
βkfk(s0)

K∑

k=1
βk

n∑

i=1
λifk(si) =

K∑

k=1
βkfk(s0)

n∑

i=1
λifk(si) = fk(s0), k = 1, . . . , K

Restricciones
n∑

i=1
λifk(si) = fk(s0), k = 1, . . . , K

La expresión a minimizar queda:

Q = E(Z∗(s0) − Z(s0))2 − 2
K∑

k=1
δk




n∑

j=1
λjfk(sj) − fk(s0)



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∂Q

∂λi
= 2γ(si − s0) − 2

n∑

j=1
λjγ(si − sj) − 2

K∑

k=1
δkfk(si), i = 1, . . . , n

sujeta a las restricciones:
n∑

i=1
λifk(si) = fk(s0), k = 1, . . . , K

Por ejemplo para k = 1,
λ1f1(s1) + λ2f1(s2) + · · · + λnf1(sn) = f1(s0)

En general:
n∑

j=1
λjγ(si − sj) +

K∑

k=1
δkfk(si) = γ(si − s0), i = 1, . . . , n

Las ecuaciones generales del kriging universal en términos del semivariograma y
en forma matricial están dadas por:




γ11 γ12 · · · γ1n f1
1 f1

2 · · · f1
K

γ21 γ22 · · · γ2n f2
1 f2

2 · · · f2
K

...
... . . . ...

...
... . . . ...

γn1 γn2 · · · γnn fn
1 fn

2 · · · fn
K

f1
1 f2

1 · · · fn
1 0 0 · · · 0

f1
2 f2

2 · · · fn
2 0 0 · · · 0

...
... . . . ... 0 0 · · · 0

f1
K f2

K · · · fn
K 0 0 · · · 0







λ1
λ2
...

λn

δ1
...

δK




=




γ(s1 − s0)
γ(s2 − s0)

...
γ(sn − s0)

f0
1

f0
2
...

f0
K




Se evidencia el requerimiento de que las fk sean linealmente independientes:
K∑

k=1
ckfk(si) = 0 ⇐⇒ ck = 0, k = 1, . . . , K

La varianza del Kriging Universal queda:

E(Z∗(s0) − Z(s0))2 = 2
n∑

i=1
λiγ(si − s0) −

n∑

i=1

n∑

j=1
λiλjγ(si − sj)

Sustituyendo:

E(Z∗(s0) − Z(s0))2 =
n∑

i=1
λiγ(si − s0) +

K∑

k=1
δkfk(s0)

Note que si K = 1 y f1(s) = 1:

E(Z∗(s0) − Z(s0))2 =
n∑

i=1
λiγ(si − s0) + δ,

y se obtiene la varianza del kriging ordinario como un caso particular.
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Cokriging
El cokriging consiste en encontrar predicciones de una variable de interes en un

lugar s0 utilizando la informacion dada por covariables. No es indispensable que
tanto la variable de interes como las covariables sean medidas en el mismo lugar.

Z∗
1 (Z1, Z2; s0) =

n1∑

i=1
λ1iZ1(si) +

n2∑

j=1
λ2jZ2(sj) = λ0

1Z1(s) + λ0
2Z2(s)

Supuestos
E[Z1(s)] = µ1

y
E[Z2(s)] = µ2, ∀s ∈ D

Cov(Z1(s), Z1(s + h)) = C1(h)

Cov(Z2(s), Z2(s + h)) = C2(h)

Cov(Z1(s), Z2(s + h)) = C12(h)

Hasta ahora se ha llevado a cabo la prediccion espacial de un proceso Z(s)
utilizando unicamente su propia informacion. Sin embargo, los fenomenos del mundo
real son en general multivariados. Este capítulo describe como llevar a cabo la
prediccion espacial de un proceso Z1(s0) utilizando su propia informacion, así como
la de covariables que se encuentren espacialmente correlacionadas con este, esto es,
utilizando Z1(s), . . . , ZP (s). Este método es conocido como cokriging.

Para la aplicacion de este método no es necesario que todas las variables esten
medidas en las mismas ubicaciones espaciales. Si todos los datos se encuentran
medidos en la misma grilla de n ubicaciones espaciales, los datos son P ×1-vectores
que forman una matriz n × P , con (i, j)-ésimo elemento Zp(si), i = 1, . . . , n,
p = 1, . . . , P . La i-esima fila de la matriz de datos corresponde a las mediciones de
todas las variables en la ubicacion si:

Z(si) = (Z1(si), Z2(si), . . . , ZP (si))ť

El interes es predecir el vector

Z(s0) ≡ (Z1(s0), . . . , ZP (s0))ť

La prediccion es realizada para una variable a la vez.
Si todas las variables son medidas en las mismas n ubicaciones la matriz de

covarianza completa Cov(Z) = Σ con todas las variables y ubicaciones observadas
es

Σ =




Σ(s1, s1) Σ(s1, s2) · · · Σ(s1, sn)
Σ(s2, s1) Σ(s2, s2) · · · Σ(s2, sn)

...
... . . . ...

Σ(sn, s1) Σ(sn, s2) · · · Σ(sn, sn)




La cual debe ser una matriz definida positiva, Vease con mas detalle en ([Bohórquez, 2024]).
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5. Ejemplos

5.1. Ejemplos ilustrativo de Métodos de Corrección de Sesgo y Mé-
tricas. Con el fin de ilustrar el procedimiento de corrección de sesgo aplicado a
productos satelitales de precipitación, se construyó un ejemplo simulado utilizando
una serie mensual de longitud n = 120. La precipitación observada se generó me-
diante una distribución Gamma con parámetros shape = 2 y rate = 1/80 (media
≈ 160 mm), mientras que la serie satelital se definió como Psat = 1,2 Pobs + ε, con
ε ∼ N(0, 202), reproduciendo una sobreestimación sistemática típica de algunos
productos satelitales.

Para evaluar el desempeño del satélite se calcularon cinco métricas: BIAS, MAE,
RMSE, la correlación temporal (r) y la eficiencia de Nash–Sutcliffe (NSE). Los
resultados iniciales mostraron un sesgo positivo elevado y errores significativamente
superiores a los de la serie observada, aunque con una correlación temporal alta.

A la serie satelital se le aplicaron tres métodos de corrección: Linear Scaling
(LS), Power Transformation (PT) y Quantile Mapping (QM). LS eliminó casi por
completo el sesgo medio; PT produjo mejoras similares mediante un ajuste no li-
neal; y QM ofreció el mejor rendimiento global al corregir tanto la media como la
forma de la distribución, reduciendo MAE y RMSE y mejorando la NSE.

Evaluación antes y después de la corrección de sesgo. El cuadro 2 resume el de-
sempeño de la serie satelital antes y después de aplicar los métodos de corrección.
La serie original presenta un sesgo positivo considerable (BIAS = 27.64 mm), lo
que indica una sobreestimación sistemática respecto a la precipitación observada.
Tanto el MAE (31.77 mm) como el RMSE (38.72 mm) muestran errores elevados,
aunque la correlación temporal es muy alta (r ≈ 0,98), señal de que la variabilidad
temporal está bien representada. La eficiencia de Nash–Sutcliffe (NSE = 0.81) con-
firma una capacidad predictiva moderada.

Tras aplicar el método Linear Scaling (LS), el sesgo se reduce prácticamente
a cero y los errores disminuyen de forma notable (MAE = 14.66 mm; RMSE =
17.99 mm), manteniendo la misma correlación. De forma similar, la Power Trans-
formation (PT) elimina el sesgo y mejora significativamente los errores, obteniendo
valores comparables a los de LS.

Por otro lado, el método Quantile Mapping (QM) alcanza la discrepancia pro-
medio más baja (MAE = 13.99 mm), ajustando mejor la distribución de los datos y
conservando una correlación elevada (r ≈ 0,98), aunque mantiene un sesgo residual
pequeño (BIAS = 1.93 mm).

En conjunto, los tres métodos mejoran de manera importante la representación
de la precipitación, siendo LS y PT los más efectivos para corregir el sesgo medio,
mientras que QM proporciona el mejor ajuste de la distribución al lograr el MAE
más bajo. Estos resultados demuestran la eficacia de las técnicas de corrección de
sesgo para mejorar productos satelitales como CHIRPS.

La Figura 3 presenta los diagramas de dispersión entre la precipitación observada
y las distintas versiones de la serie satelital: original y corregidas mediante Linear
Scaling (LS), Power Transformation (PT) y Quantile Mapping (QM).
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Métrica Original LS PT QM
BIAS (mm) 27.64 0.02 0.01 1.93
MAE (mm) 31.77 14.66 15.02 13.99
RMSE (mm) 38.72 17.99 18.44 17.21
r 0.98 0.98 0.98 0.98
NSE 0.81 0.94 0.93 0.95

Cuadro 2. Métricas antes y después de la corrección de sesgo

En el panel correspondiente a la serie satelital original, se aprecia una disper-
sión considerable y una tendencia sistemática por encima de la línea de referencia,
reflejando la sobreestimación capturada por el BIAS positivo. Tras aplicar LS, los
puntos se acercan notablemente a la diagonal, lo que indica que el ajuste de esca-
la corrige efectivamente el sesgo medio. La transformación PT produce un patrón
similar, con una alineación estrecha a lo largo de toda la distribución.

Por su parte, el método QM genera la mayor adherencia a la línea 1:1, mostran-
do una corrección más completa que abarca tanto la media como la forma de la
distribución. Los puntos se distribuyen de manera más compacta y cercana a la
diagonal, especialmente en los valores medios y altos de precipitación.

En conjunto, la figura evidencia que todos los métodos mejoran la corresponden-
cia entre ambas series, siendo QM el que logra la corrección más uniforme sobre
toda la gama de valores.

Figura 3. Diagramas de dispersión entre la precipitación obser-
vada y la satelital, antes y después de aplicar cada método de
corrección (LS, PT y QM).

Las Figuras 4, 5 y 6 muestran la comparación temporal entre la serie observada y
las versiones corregidas del producto satelital mediante los métodos Linear Scaling
(LS), Power Transformation (PT) y Quantile Mapping (QM), respectivamente.

174



En el caso de Linear Scaling, la serie corregida reproduce con gran fidelidad la
dinámica temporal de la precipitación, ya que el método ajusta únicamente la escala
y conserva la forma original de la serie satelital. Esto se refleja en una alineación
estrecha entre ambas curvas a lo largo de todo el periodo.

El método Power Transformation produce un comportamiento similar, mante-
niendo la coherencia temporal pero aplicando un ajuste adicional según el parámetro
de potencia λ, lo que permite modificar levemente la forma de los valores extremos.

Por su parte, Quantile Mapping muestra la mayor correspondencia con la serie
observada, ya que corrige no solo la media y la escala sino también la distribución
completa. Esto se evidencia en una coincidencia más precisa de los picos altos y de
los valores bajos de precipitación.

En conjunto, las tres gráficas confirman visualmente la mejora lograda con los
distintos métodos de corrección, siendo QM el que presenta el ajuste más completo
en términos de magnitud y comportamiento temporal.

Figura 4. Comparación temporal entre la precipitación observa-
da, satelital y corregida mediante Linear Scaling.
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Figura 5. Comparación temporal entre la precipitación observa-
da, satelital y corregida mediante Power Transformation.

Figura 6. Comparación temporal entre la precipitación observa-
da, satelital y corregida mediante Quantile Mapping.

5.2. Ejemplo ilustrativo Método Kriging con datos simulados. Con el ob-
jetivo de mostrar de forma clara el procedimiento de interpolación espacial aplicado
en este estudio, se desarrolló un ejemplo utilizando datos simulados. Se generaron
15 estaciones ubicadas dentro del rango geográfico aproximado de Honduras y se
asignaron valores de precipitación simulada mediante una distribución Gamma con
parámetros shape = 2 y scale = 60 (equivalente a rate = 1/60). Esta parametriza-
ción produce valores positivos y una dispersión amplia, con una media cercana a
120 mm, lo cual resulta adecuado para representar variabilidad típica de precipi-
taciones intensas. Aunque los datos no corresponden a mediciones reales, permiten
visualizar de manera fiel el flujo de modelación utilizado en el análisis principal.
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5.3. Semivariograma experimental y selección del modelo. Tras trans-
formar las coordenadas geográficas al sistema UTM Zona 16N, se construyó el
semivariograma experimental para describir la variabilidad espacial de la precipita-
ción simulada. El semivariograma mostró un aumento rápido de la dispersión para
distancias cortas, seguido de una estabilización progresiva al incrementarse la dis-
tancia. Este patrón es característico de procesos que presentan correlación espacial
hasta un rango finito.

Con base en este comportamiento, se ajustaron varios modelos teóricos (Expo-
nencial, Gaussiano y Esférico). El modelo esférico presentó el ajuste más coherente,
ya que:

reproduce adecuadamente el incremento inicial de variabilidad,
captura la meseta (sill) observada en el semivariograma experimental,
y presenta un rango consistente con la separación máxima entre las estaciones
simuladas.

La Figura 7 muestra el semivariograma experimental junto con el modelo esférico
ajustado, evidenciando su adecuación para este ejemplo.

Figura 7. Semivariograma experimental y modelo esférico ajus-
tado para los datos simulados.

5.4. Aplicación del Kriging Ordinario. Una vez seleccionado el modelo es-
férico y definido el grid de interpolación, se aplicó Kriging Ordinario para obtener
la superficie continua de precipitación simulada. El resultado (Figura 8) muestra
una distribución espacial claramente diferenciada por intervalos de valores, los cua-
les aparecen en la leyenda del mapa. Estos rangos corresponden a la precipitación
predicha en milímetros y abarcan desde aproximadamente 30 mm hasta cerca de
335 mm.

En el mapa se observan cinco clases de color, cada una asociada a un intervalo
específico:

Azul oscuro (30–91 mm): representa las zonas con la precipitación esti-
mada más baja, generalmente influenciadas por estaciones que en los datos
simulados tenían valores pequeños.
Morado (91–152 mm): indica valores bajos a moderados, formando una
transición alrededor de las zonas más frías.
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Rosado (152–213 mm): corresponde a valores intermedios de precipitación
y cubre gran parte de la superficie, reflejando la suavidad típica del kriging.
Naranja (213–273 mm): identifica regiones donde el modelo predice pre-
cipitaciones relativamente altas.
Amarillo (273–334 mm): marca los valores máximos predichos, ubicados
en áreas cercanas a estaciones con altos valores simulados.

Cada núcleo o mancha circular de color corresponde a la zona de influencia de
una estación, lo cual es característico del Kriging cuando se trabaja con un conjun-
to reducido de puntos. Las transiciones entre colores son suaves, lo que confirma
que la interpolación respeta la estructura espacial definida por el semivariograma
ajustado: la predicción coincide estrechamente con los valores de las estaciones en
zonas cercanas y se suaviza progresivamente a medida que aumenta la distancia.

En conjunto, la figura evidencia que el modelo geoestadístico genera una super-
ficie continua, coherente y estructuralmente consistente con los datos simulados,
permitiendo identificar con claridad zonas de mayor y menor precipitación dentro
del área evaluada.

Figura 8. Predicción de precipitación obtenida mediante Kriging
Ordinario en el ejemplo simulado.
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6. CONCLUSIONES

El análisis geoestadístico realizado con datos simulados permitió verificar la co-
herencia del proceso de construcción y ajuste del semivariograma, así como la ido-
neidad del modelo esférico seleccionado. El semivariograma experimental presentó
una meseta en torno a 12 000 mm2 y un rango aproximado de 30 000 metros, pa-
rámetros que permitieron generar mediante Kriging Ordinario una superficie de
predicción suave y espacialmente consistente con la disposición de las estaciones
simuladas. Este resultado demuestra la estabilidad y representatividad del enfoque
utilizado.

Complementariamente, el ejemplo de corrección de sesgo mostró que los métodos
LS, PT y QM mejoran sustancialmente la correspondencia entre la precipitación
satelital y la observada, reduciendo el sesgo y los errores asociados, y preservando la
estructura temporal de la serie. Entre ellos, Quantile Mapping destacó por ofrecer la
corrección más completa al ajustar tanto la media como la forma de la distribución.

En conjunto, ambos ejercicios ilustran de manera clara la validez de los proce-
dimientos empleados en esta investigación, tanto para la modelación espacial me-
diante kriging como para la corrección estadística de productos satelitales, lo que
respalda su aplicación sobre datos reales en el análisis principal.
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