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Presentacion

Este documento fue desarrollado por la Coordinacién de Investigacion y Vin-
culacion de la Maestria en Matemaética de la UNAH, presenta articulos di-
vulgativos y de investigacion desarrollados por estudiantes del Seminario de
Investigacion de Estadistica Matematica de la quinta promociéon del progra-
ma, cursos desarrollado durante el tercer periodo académico del ano 2025.
Se abarca una temética bastante amplia: Regresion cuantilica, Pre-training,
Redes neuronales convolucionales, Random forest, Teoria de valores extre-
mos, Modelos VAR, Estadistica robusta, Inferencia causal y Modelado Es-
pacial; en algunos de los trabajos se desarrolld una revision bibliografica de
trabajos pertinentes y se resumié segin lo comprendido por cada autor, en
otros casos, se realizd avances en sus trabajos de tesis que incluso incluyen
experimentacion.

El objetivo principal de desarrollar este documento es que a futuro, en base
a la experiencia obtenida y después de tener varias experiencias similares, se
transforme en una revista cientifica de Matematicas, cuestiéon que requiere
de mucho trabajo por parte del equipo de profesores investigadores del pro-
grama y otros colaboradores externos; ademés de ser una muestra de que
en el programa de maestria en Mateméticas y por parte de la Coordinacion
de Investigaciéon y Vinculacion, se esta desarrollando en los estudiantes un

espiritu investigador.



Todas las revisiones bibliograficas y temas aqui presentados se encasillan
dentro de las lineas de investigacion de la UNAH, entre los temas priori-
tarios abarcados se encuentran: ciencia, cambio climatico y vulnerabilidad,
productividad, infraestructura y desarrollo territorial. Esto evidencia que la
Coordinacion de Investigacion y Vinculacion de la Maestria en Matemética
esta sumamente interesada en colaborar con las prioridades investigativas de

la universidad y mantiene un compromiso con vincularse con la sociedad.

Enero del ano 2026, Ciudad Universitaria

Tegucigalpa, M.D.C., Honduras
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REGRESION CUANTILICA: UNA BREVE REVISION
BIBLIOGRAFICA DE SU EVOLUCION Y METODOS

ERLIN VASQUEZ

RESUMEN. La Regresiéon Cuantilica es una extension de la regresién lineal que
permite relajar los supuestos de normalidad y homocedasticidad. Fue propues-
ta por Koenker & Bassett, y el objetivo es estimar los cuantiles condicionales
de la variable de respuesta dadas las covariables. Se explica como este método
extiende la regresion lineal al permitir el estudio de cualquier cuantil de la
distribucién condicional. El siguiente trabajo detalla la fundamentacién ma-
temaética de los cuantiles, la formulacién del problema de regresién cuantilica
y la inclusién de técnicas de regularizacién para controlar la complejidad del
modelo y seleccionar variables relevantes, como el LASSO. Ademas, expone
principales estrategias computacionales como el ADMM y métodos de punto
interior para resolver estos problemas en alta dimension, acompafnando la re-
visién con simulaciones que ilustran los beneficios metodolégicos frente a la
regresion OLS convencional. Se destaca que la regresién cuantilica penalizada
constituye un marco robusto y flexible para el analisis estadistico, permitien-
do caracterizar con mayor precisiéon la distribuciéon condicional completa de
la variable de respuesta. Su robustez ante valores atipicos (outliers), la hace
un método 1til en modelado de riesgos financieros, y es aplicable a economia,
ciencias sociales, medicina donde la heterogeneidad y los efectos no lineales
son comunes.

ABSTRACT. Quantile Regression is an extension of linear regression that rela-
xes the assumptions of normality and homoscedasticity. It was proposed by
Koenker & Bassett, and its objective is to estimate the conditional quantiles
of the response variable given the covariates. It is explained how this method
extends linear regression by allowing the study of any quantile of the conditio-
nal distribution. The following work details the mathematical foundations of
quantiles, the formulation of the quantile regression problem, and the inclusion
of regularization techniques to control model complexity and select relevant
variables, such as LASSO. In addition, it presents the main computational
strategies such as ADMM and interior-point methods to solve these problems
in high dimensions, accompanied by simulations that illustrate the methodolo-
gical benefits compared to conventional OLS regression. It is emphasized that
penalized quantile regression constitutes a robust and flexible framework for
statistical analysis, allowing for a more precise characterization of the full con-
ditional distribution of the response variable. Its robustness to outliers makes
it a useful method in financial risk modeling, and it is applicable to economics,
social sciences, and medicine, where heterogeneity and nonlinear effects are
common.

Date: Diciembre 2025.
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1. INTRODUCCION

El estudio de la regresiéon cuantilica introducida formalmente por Koenker y
Bassett ([11]), representa un avance importante en la estadistica aplicada y la eco-
nometria, al permitir la estimaciéon de las relaciones condicionales subyacentes no
solo en la media de la variable de respuesta, sino en cualquier cuantil de la dis-
tribucién. La regresiéon cuantil puede verse como una extensién de regresiéon lineal
ordinaria (OLS), que asume efectos homogéneos de las covariables y se centra en
la media condicional de la variable de respuesta dadas las covariables, la regresién
cuantilica a diferencia de OLS captura variaciones en la intensidad de estos efec-
tos a lo largo de la distribucién, lo cual tiene relevancia en escenarios donde los
datos presentan heterogeneidad, como por ejemplo en estudios de distribucién de
ingresos, impactos de politicas educativas o andlisis de riesgos en salud ([12]).

Este método ofrece un aporte valioso en contextos o situaciones donde las dis-
tribuciones son asimétricas o presentan colas pesadas, situaciones que suelen pre-
sentarse comunmente en datos reales del drea social o econémica. En este contexto,
por ejemplo, en el andlisis de salarios, la regresion cuantilica puede dar indicios de
como el efecto de la educacién varia entre trabajadores de bajos ingresos (cuan-
tiles inferiores) y altos ingresos (cuantiles superiores) ofreciendo perspectivas mas
reales o matizadas que la OLS, que podria subestimar o sobrestimar efectos en los
extremos ([4]).

El objetivo principal de este trabajo es brindar una revision comprehensiva de
la regresién cuantilica, desde su heuristica en sus bases teéricas. Secundariamente,
se busca resaltar su importancia metodolégica para investigadores en estadistica,
promoviendo su uso y robustez. La relevancia de esta tematica radica en la capaci-
dad para detectar e informar politicas publicas mas equitativas, al poder identificar
efectos importantes que afectan desproporcionadamente a aquellos sectores mas
vulnerables. En las siguientes secciones, se proporciona una justificacion sobre el
uso y aplicacién de este método en el contexto de Honduras, se revisan los ante-
cedentes historicos mas relevantes y destacados, se detalla el marco teérico, por
ultimo se concluye con algunas implicaciones futuras en este escenario.

2.  JUSTIFICACION

El estudio y exploracién de la regresiéon cuantilica contribuye directamente a
abordar desafios estructurales en Honduras, como ser la desigualdad en la distribu-
cién de ingresos y la pobreza multifacetica, que impactan gran parte de la poblacién
segin el Instituto Nacional de Estadistica (INE) en 2024 ([10]). La regresién cuan-
tilica permite separar los efectos de variables como remesas en diferentes sectores
socioeconémicos, el nivel educativo, el acceso a servicios basicos que pueden bene-
ficiar en el disenio de intervenciones focalizadas que fomenten la inclusién social y
el crecimiento sostenible.

De acuerdo a las prioridades de investigacion establecidas por la Universidad
Nacional Auténoma de Honduras (UNAH), este trabajo se alinea con el eje de De-
sarrollo Economico y Social, de manera mas especifica en el tema prioritario de
Pobreza e inequidad ([29]), donde se le da prioridad al analisis de desigualdad sobre
los grupos sociales mas vulnerables. Pero ademas, en el marco de la Maestria en
Matemaética con Orientacién en Estadistica Matematica de la UNAH, este estudio
se introduce en la linea de investigacion Econometria y Actuaria con el enfoque de



manejo, procesamiento y presentacién de la informacién, pero también la predic-
cién de tendencias de un proceso, promoviendo asi herramientas avanzadas para el
analisis predictivo y la toma de decisiones.

Segun el estudio realizado por Diaz ([5]) donde se usa como variable de respuesta
a la pobreza laboral definida como la cantidad de personas que no tienen acceso
a la “canasta bésica” y algunas variables explicativas consideradas en estudio son
la inflacién, crecimiento econémico (PIB), etc; donde para estimar el impacto de
estas variables sobre la distribucién de la pobreza se emplea modelos de regresién
cuantilica; esto hace resaltar la importancia de desentranar este método tanto en
forma tedrica como en contextos aplicados.

3. ANTECEDENTES

El desarrollo formal de la regresién cuantilica fue liderado por Roger Koenker y
Gilbert Bassett, quienes en su articulo de 1978 definieron el método como la solucién
a un problema de minimizacién de la pérdida asimétrica, extendiendo asf el principio
de minimos cuadrados ordinarios a cuantiles arbitrarios ([11]). Koenker, ha sido el
principal impulsor, publicando el libro de referencia Quantile Regression en 2005,
donde se expone algoritmos computacionales, la teoria inferencial y aplicaciones
([12)).

Aunque la regresién cuantil se formalizé en 1978, tiene sus raices en el siglo XIX,
con contribuciones iniciales de matematicos como Pierre-Simon Laplace, quien en
1818 propuso estimadores basados en cuantiles para resumir distribuciones ([13]).
Edgeworth extendié estas ideas en la década de 1880, introduciendo conceptos de
profundidad estadistica que anticipan la robustez moderna ([6]). Mas tarde, en el
siglo XX, Ragnar Frish, pionero de la econometria exploro formas robustas de re-
gresion en los afios de 1920, aunque no llego a formalizar los cuantiles condicionales.

Después del tratamiento formal de la regresién cuantilica por Koenker y Bassett
en las décadas siguientes se produjeron avances significativos. En los afios 1990, se
extendié a datos censurados y de supervivencia, con trabajos como el de Ying ([34])
sobre regresién mediana censurada. En los 2000, Yu & Moyeed ([35]) introdujeron
enfoques bayesianos utilizando la distribucién Laplace asimétrica (ALD), facilitando
inferencia en modelos complejos ([35]). Extensiones a datos de panel incluyeron
efectos fijos por Lamarche ([17]), y modelos factoriales para alta dimensionalidad
por Koenker ([13]).

Se han propuesto extensiones ingeniosas ah este método, Meinshausen propone
una extensién de Ramdon Forest para estimar cuantiles condicionales ([20]), Takeu-
chi propone un método no paramétrico para estimar cuantiles condicionales, usando
técnicas de kernel methods/ maquinas de soporte (SVM/RKHS) que son mas flexi-
bles que modelos lineales ([25]), Yichao & Yufeng desarrollan métodos de seleccion
de variables dentro del marco de la regresiéon cuantil, focalizando en penalizaciones
tipo LASSO adaptativo y SCAND aplicadas a la regresién cuantil ([32]).

Aportes recientes en regresiéon cuantilica como ser, métodos para estimar cuanti-
les extremos condicionales combinando teoria de valores extremos y gradient boos-
ting ([30]), Steven & Padilla proponen un método en un marco no paramétrico que
mezcla la funcién de pérdida de cuantiles con una penalizacién de LASSO aplicado
sobre un grafo de vecinos cercanos (K-nearest neighbors, KNN) ([33]). Li & Megid-
do proporcionan un método que permite estimar simultdneamente los coeficientes
de regresion para varios cuantiles, suavizandolos como funciones suavizadas de los



cuantiles mediante spline ([18]). Cuando los datos tienen muchas variables (mas
que observaciones) y queremos hacer regresién cuantil, los métodos clasicos (QR
penalizado con Li, “Quantile LASSO”) subren dificultades, Tan & Wang & Zhou
proponen una combinaciéon de Convolution smoothing para suavizar la funcién de
pérdida de cuantiles y una regularizacién céncava plegada que reduce el sesgo de
una penalizacién Ly ([26]).

La evolucién de la regresion cuantilica ha pasado de un enfoque complementario
a la media a una herramienta estdndar en econometria, con mas de 20,000 citas al
trabajo fundacional de Koenker y Bassett. Recientes revisiones, como la de ([31]),
enfatizan sus aplicaciones en experimentos estocasticos y modelos paramétricos. En
ciencias del desarrollo, ([22]) demostré su utilidad para analizar efectos diferenciales
en logros educativos, revelando variaciones no capturadas por la OLS.

Estos aportes han expandido la regresién cuantilica a datos correlacionados,
censurados y de alta dimensién, consolidandola como método robusto para hetero-
geneidad.

4. MArco TEORICO

En el estudio de la Regresion Cuantilica, comprender los cuantiles, sus propie-
dades estadisticas y la estructura de problemas de optimizacién que permiten su
calculo es esencial para analizar la distribuciéon condicional de la variable de res-
puesta mas alla de la media. La regresién cuantilica surge como una extension del
enfoque por minimos cuadrados la reeemplazar el error cuadratico por una funcién
de perdida asimétrica que permite capturar relaciones heterogéneas a lo largo de
cada cuantil de la distribuciéon condicional.

La regresiéon cuantil caracteriza el comportamiento de la variable de respues-
ta, lo cual resulta indispensable en situaciones donde el efecto de las covariables
presentan colas pesadas, asimetria, heterogeneidad o valores atipicos. Como se ha
mencionado antes, el conocimiento de los cuantiles resulta fundamental para com-
prender este enfoque. A continuacién, se presenta una introduccién detallada sobre
este concepto.

4.1. Cuantiles. Sea X una variable caracterizada por su funcién de distribucion
acumulada Fx (z), continua por la derecha y definida como:

Fx(z) = P(X < x).
Para 7 € (0,1) el 7-ésimo cuantil de X es,
Qx (1) = F' (1) = inf{x € R: Fx(x) > 7}.

Ny . . . . 1,1
La funcién Qx (7) es continua por la izquierda y, en este marco, la mediana F'y " (3),
juega un rol central. Cuando X es una variable aleatoria continua, el cuantil es tinico
y la igualdad se satisface estrictamente. Ademas, los cuantiles se pueden ver como
solucion al problema de optimizacion,

Qx(7) € argmin E[p, (X — ¢)]

donde p, (1) = p(r — I(p < 0)) es la funcién de pérdida cuantilica.

Dado que F'x es mondtona no decreciente, cualquier elemento de {z : Fx(z) = 7}
minimiza la pérdida esperada. Cuando la solucién es tnica, & = F ;1(7); de lo
contrario, tenemos un intervalo de cuantiles 7-ésimos del cual podemos elegir el



elemento mas pequeno, para adherirnos a la convencién de que la funcién cuantil
empirica sea continua por la izquierda ([12]).

Los cuantiles suelen agruparse para dividir la distribucién en partes iguales, tales
como:

1. Cuartiles, que segmentan a la distribucién en cuatro partes correspondientes
a los cuantiles 0.25, 0.5 y 0.75.

2. Deciles, que la dividen en diez partes, asociados a los cuantiles 0.1, 0.2, - - -,
0.8, 0.9.

3. Percentiles, que la particionan en cien partes.

Dada una muestra aleatoria X, Xs, -+, X,, de F'x es posible ordenarla de forma
ascendente y expresarla como X (1), X(), -+, X(,) donde X(1) < X(g) <+ < X(y),
y X(i) es la i-ésima estadistica de orden. Al estimar Fx mediante la funcién de
distribucién empirica F;,, se tiene

1 n
Fo(z) == ) I(X; <),
(@)= L1 < 2)
o equivalente,
0 si z< X(l)

sl

si X(i)§x<X(i+1)a i=1,---,n—-1

1 si .’L‘ZX(n)

da lugar a los cuantiles muestrales ([7]).

Para 7 € (0,1) se define el 7-cuantil muestral de X como el cuantil 7 de la fun-
cién de distribucién empirica F, y se denota por @, (7) y esta dada por:

X(n) si nT—l <7<1
Estas expresiones ilustran la relacion subyacente que se presenta entre los cuan-
tiles muestrales y las estadisticas de orden ([7]).

4.2. Regresion cuantilica. Consideremos un conjunto de covariables o matriz
de disefio X € R™ P y una variable de respuesta ¥ € R™*!. El modelo lineal
multivariado esta dado por:

(4.1) Y=XB+¢

donde S € RP*! es el vector de pardmetros, ¢ € R®*! es una perturbacién
aleatoria que recoge todos aquellos factores distintos de las variables X; influyendo
en Y;. En regresion lineal multivariada se busca estimar la media de la variable de
respuesta Y condicionada a que X = x es decir,

EY|X =x) =2z



El procedimiento mas utilizado para estimar 3 es el de minimos cuadrados ordina-
rios (OLS) que involucra la minimizacién de la suma de las desviaciones al cuadrado,

es decir,
n

n
Yol =) (Yi—XiB)
i=1 i=1

para estimar 8 basta con derivar e igualar después a 0, obteniéndose de forma
cerrada el estimador para f3:

Bors = (XTX)"'XY

pero el método OLS requiere hipétesis previas sobre la aleatoriedad de la relacién
(4.1) expresadas en términos g; ~ N(0,0?).

Los objetivos que se persiguen en regresién cuantilica son los mismos que en OLS,
es decir, describir las relaciones entre las variables. De forma analoga al modelo de
minimos cuadrados ordinarios, en el que E(Y|X = 2) = 23, y por lo tanto
E(E|X =2) =0, aqui Qy(7|X = z) = 273, lo que implica que Qy (¢|X = z) =
0, siendo el tnico supuesto que se hace sobre los errores aleatorios. La regresién
cuantilica busca estimar el 7-ésimo cuantil esperado de la variable de respuesta
condicionado a las observaciones. Es decir, dada la muestra de tamaifio n, {X;,Y;},
i=1,...,n, del modelo lineal de cuantiles

Qv (71X =x) =z B,

el estimador del coeficiente del 7-ésimo cuantil de regresion de Koenker y Bassett
(1978) ([11]) es

4.2 3, = { (Y — X
(4.2) B argﬁmeg;;p( i B)

donde p,(p) = p(r — I(p < 0)) es la funcién de pérdida cuantilica. El pardme-
tro [, describe el cambio en el cuantil condicional de Y ante variaciones en X.
La variacién de 3, en funcién de 7 permite detecta heterogeneidad en la relacién
respuesta—covariables. Este enfoque (4.2) permite modelar cuantiles condicionales
distintos de la media, ofreciendo robustez ante outliers, heterocedasticidad y distri-
buciones no normales.

El problema planteado anterior, presenta el inconveniente de que p,(p) la funcién
de perdida cuantilica no es diferenciable, lo que hace necesario convertir el pro-
blema (4.2) a un problema de programacién lineal bajo algunas transformaciones,

introduciendo 2n variables artificiales, o «de holguray, {u;,v; : i = 1,...,n} para
representar las partes positiva y negativa del vector de residuos,
(4.3) min {riju+(1—-7)1v |1, X8 +u—v =y},

(B,u,v)ERP ><]R3_”

donde 1,, denota un vector de n unos. Claramente, en (4.3) estamos minimizan-
do una funcién lineal en un conjunto de restricciones poliédrico, que consiste en
la interseccién del hiperplano de dimension 2n 4+ 1 determinado por las restriccio-
nes de igualdad lineal y el conjunto RP x R3". Dicho problema puede ser resuelto
mediante diversos algoritmos que trataremos mas adelante. Muchas caracteristicas
de la soluciéon son inmediatamente evidentes a partir de este simple hecho. Por
ejemplo, min{u;,v;} debe ser cero para todo i, ya que, de lo contrario, la funcién
objetivo puede reducirse sin violar la restriccién al disminuir dicho par hacia cero.



Esto se conoce cominmente como complementariedad en la terminologia de la pro-
gramacion lineal. De hecho, por esta misma razén, podemos restringir la atencién
a «soluciones basicas» de la forma £ = Y; para alguna observacién i. Observe que
la funcién objetivo es convexa y lineal por tramos, con puntos de inflexién en los
valores observados Y; ([12]).

4.3. Regularizacién en Regresion cuantilica. En la practica contempora-
nea, la regresion cuantilica a menudo incorpora penalizaciones para controlar la
complejidad del modelo y mitigar el sobreajuste. El problema general penalizado
se formula como:

(4.4) Br = arg min ; p-(Yi = X' B) + AP(B)

donde p, (.) representa la perdida cuantilica en el cuantil 7, y P(3) denota el termino
de penalizacién, cominmente basado en normas L; similar a Lasso o Ly similar a
Ridge ([19)).

Historicamente, la regularizacion surge de la necesidad de equilibrar fidelidad al
dato y suavidad al ajuste. Hoy en dia, se busca minimizar:

(4.5) mfin{L(f)—i—)\P(f)} =L(f)+ AP(f) —>mfin!

donde L(f) cuantifica la infidelidad o falta de ajuste, o incluso mejor la perdi-
da al ajuste f y P(f) impone una penalizacién afectada por una pardmetro de
regularizacion A > 0. Una linea de desarrollo independiente, ajena inicialmente
de probabilidad, y alineada con la “combinaciéon de observaciones” segtin Stigler
([19]), remite a Hadamard ([8]),quien sefialo de que no todos los problemas estan
realmente bien planteados. Tikhonov (27, 28]) propuso la regularizacién como fa-
milia de técnicas para estabilizar soluciones, cuya forma mas exitosa coincida con
la expresién anterior 4.5.

Tibshirani ([24]) inicia con la penalizacién restringida, motivado por el nonne-
gative garrote de Breiman ([2]). Ambas perspectivas — Tikhonov y Phillips — estéan
estrechamente vinculadas via multiplicadores de Lagrange, bajo convexidad de L y
P ([19]).

4.8.1.  Ajuste del pardmetro. Whittaker y Robinson ([36]) indicaban que el gra-
do de sacrificio de fidelidad por suavidad varia segin el problema, recomendando
probar valores de A y seleccionar el mas satisfactorio. Actualmente, predominan
métodos automaticos para la selecciéon de A.

Un enfoque comtn es la validacién cruzada, como sugiere Hastie ([9]), preferi-
blemente con poco grupos (k-fold). Valores tipicos como k = 2 o k = 10 suelen
proporcionar resultados fiables, aunque la seleccién aleatoria puede inducir volati-
lidad ([19]).

La validacién cruzada leave-one-out (n pliegues) es computacionalmente costosa
para penalizaciones no cuadréatica debido a su no linealidad. Para Lq, se prefiere
la nocién de grados de libertad, equivalentes al numero de ajuste exactos en cero
como verificaron en Koenker ([16]) y posteriores estudios ([19]).



4.4. Métodos computacionales. La regresién cuantilica cldsica se formula co-
mo un problema de optimizacion lineal que se puede resolver mediante método
simplex (punto exterior) o métodos de barrera/interior; la eleccién dependen de
n, p y la estructura de dispersién. Para n y p moderados, el método de punto
exterior puede ser competitivo; para gran escala, el método de punto interior es
preferible por su complejidad amortizada. El método ADMM es fundamental para
trabajar con la regresiéon cuantilica regularizada. Esta seccién ofrece un recorrido
por técnicas computacionales clave en regresién cuantilica.

4.4.1.  Metodos de punto exterior. El algoritmo de Barrodale y Roberts ([1]) explo-
to la dualidad con variables acotadas en la regresiéon mediana. El problema primal
de regresion mediana es:

min{1)u+1 v |y — Xb=u—v; (u,v) >0}

de dimensién (2n + p). El dual tiene resulta mds simple:

méx {y'a| X Ta=1X"1,; a€0,1]"}.
a

Implementa una estrategia dual de tipo Edgeworth: dada una soluciéon bésica

B — (X (M) ~Ly(h)

se identifica la direccién de descenso mas pronunciada.

La extension a cuantiles 7 # 0.5 es directa: nn el problema primal, solo reempla-
zamos los 1,, por pesos asimétricos apropiados; en el dual, simplemente cambiamos
el 7 por 1 — 7. Variaciones en 7 generan trayectorias de soluciones; Portnoy ([23])
demostrd que el numero esperado de soluciones distintas es O(nlogn). Técnicas
paramétricas similares aplican a problemas penalizados tipo Lasso. Aunque los mé-
todos simplex facilitan el trazado de trayectorias, el numero de soluciones puede
volverse prohibitivo, requiriendo aproximaciones ([15]).

4.4.2.  Métodos de punto interior. A diferencia de los métodos de punto exterior,
que transitan vértices del conjunto factible, los de punto interior parten del centro
hacia un vértice. El método de barrera logaritmica de Frisch para programacion
lineal canénica:

min{c'z | Az =b; = >0}
reemplaza desigualdades por:
P
mi{ ¢’z — uZlong | Ax =b
j=1
Relajando p — 0, se converge a un vértice. Explotando primal y dual:
méx {b'y | ATy+2=1¢; z>0},
y

la optimalidad implica que ¢ — uX 'e = ATy, por lo que podemos establecer
2z = uX e para satisfacer la restriccion dual y obtener el sistema



Ax = b,
ATy+z=c,
Xz = pe,
x>0,
z > 0.

La trayectoria paramétrica (z(u), y(u), 2(1)) describe la trayectoria central desde
el centro del conjunto de restricciones hasta una solucién en el borde del conjunto
de restricciones que satisface la condicién clasica de holgura complementaria, Xz =
0, cuando p = 0. Cuando la dimensiéon paramétrica del modelo es grande, las
implementaciones de punto interior puede ser bastante lentas, pero en la mayoria de
las aplicaciones no paramétricas, como las que abarca el modelo aditivo penalizado
por variacién total descrito en Koenker ([14]) e implementado en rgss de quantreg,
la matriz de diseno es extremadamente dispersa. En estos caso, la factorizacion de
Cholesky viabiliza problemas con miles de pardmetros ([15]).

4.4.8.  Meétodo de direccion alterna de multiplicadores (ADMM). Es comiin en apli-
caciones estadisticas encontrarse con problemas de optimizacion con componentes
convexos aditivamente separables. El algoritmo resuelve problemas de la forma

minimizar f(x) + g(z)
sujeto a Ax + Bz =c¢
con f, g convexas; variables x € R™ y z € R™, donde A € RP*" B € RP*™ vy
¢ € RP . Un ejemplo familiar serfa f como la log-verosimilitud (negativa) y g una

penalizacién paramétrica tipo lasso.
El Lagrangiano aumentado es:

Ly(w,2y) = f(@) + g(z) +y" (Av + Bz — o) + £ || Ax + Bz — c[3.

El ADMM consta de las iteraciones

(4.6) o* = argmin L, (z, 2*, y")
(4.7) A= argmin L, (2", 2, y%)

z
(4.8) y* =gk 4 p(Axk T 4 BEL — ),

donde p > 0. Este algoritmo del método de direccion alterna de multiplicadores
(ADMM) tiene amplia aplicabilidad y se ha demostrado que converge bajo condi-
ciones suaves ([15], [3]).



4.4.4. Forma Escalada. Combinando terminos lineales y cuadraticos en el lagran-
giano aumentado, y escalando la variable dual u = %y, el ADMM puede escribirse
en una forma ligeramente diferente, que suele ser mas conveniente. Definiendo el
residuo r = Ax + Bz — ¢, tenemos

2
T Pyaz_ P
yir+ Lyrg =2

1 1 P P
r gy = g W= Sl -l = Sl
Usando la variable dual escalada, podemos expresar el ADMM como

(4.9) o - argmin{f(x)+g ||Ax+sz_c+uk||§}
(4.10) 21— argmin {g(z> i g |As*+1 4 Bz — c—&-ukH;}
(4.11) uF = ub ARt 4 B —

Definiendo el residuo en la iteracién k como r* = Az* + Bz*F — ¢, vemos que

k
uf =’ + E r,
i=1

la suma acumulada de los residuos ([3]).

4.4.5.  Pardametro de Penalizacion Variable. Para acelerar convergencia, se emplea
pi variable (posiblemente diferentes para cada iteracién), con el objetivo de mejorar
la convergencia en la practica y hacer que el rendimiento dependa menos de la
eleccién inicial del parametro de penalizaciéon. Aunque puede ser dificil probar la
convergencia del ADMM cuando p varia en cada iteracién, la teoria para p fijo ain
se aplica si se asume que p se fija después de un nimero finito de iteraciones.

Un esquema simple que a menudo funciona bien es

TR s rE s > s,
(4.12) pEi= ok e i |85 la >l
ok en caso contrario,

donde p > 1, 77" > 1y 79" > 1 son pardmetros. Elecciones tipicas podrian ser
p =10y 7t = rdecr — 9 La idea detras de esta actualizacién del pardmetro de
penalizacién es intentar mantener las normas de los residuos primal y dual dentro
de un factor u entre si a medida que ambos convergen a cero ([3]).

Las ecuaciones de actualizaciéon del ADMM sugieren que valores grandes de p
imponen una gran penalizacién a las violaciones de la factibilidad primal y, por lo
tanto, tienden a producir residuos primales pequenos. Por el contrario, la definicién
de sFt1 sugiere que valores pequenos de p tienden a reducir el residuo dual, pero a
costa de disminuir la penalizacién sobre la factibilidad primal, lo que puede resultar
en un residuo primal mas grande. El esquema de ajuste (3.13) aumenta p por 78
cuando el residuo primal parece grande en comparacién con el residuo dual, y reduce
p por 79 cuando el residuo primal parece demasiado pequefio en relacién con el
residuo dual. Este esquema también puede refinarse considerando las magnitudes

relativas de P y edual ([3)).
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Cuando se usa un pardmetro de penalizacion variable en la forma escalada del
ADMM, la variable dual escalada u* = (1/p)y* también debe reescalarse después
de actualizar p; por ejemplo, si p se reduce a la mitad, u* debe duplicarse antes de
continuar ([3]).

Este método es particularmente relevante en regresion cuantilica penalizada
cuando las funciones son convexas.

4.5. Simulaciones. Se muestran a continuacién simulaciones considerando tres
escenarios:

1. Primer escenario (1): Se consideran 500 observaciones tomadas de una va-
riable predictora distribuida uniformemente en el intervalo de (0,100). La
variable de respuesta se genera mediante la expresion:

Y=2+4+05X+¢

donde € se selecciono de una de una distribucién normal con media 0 pero
varianza dada por 1+ 0.3X. En este escenario se esta considerando la hete-
rocedasticidad, se aplica la regresiéon cuantilica en los cuantiles Q1, Q2, Q3 y
se hace una comparativa visual con respecto a la regresion lineal que predice
la media condicional, que pasa por el centro del diagrama de dispersiéon por
lo cual no captura que la variabilidad de los datos cambia con X. Ademas
noétese que la regresién cuantilica es mas informativa que la regresion lineal
cuando los datos presentan heterocedasticidad y la distribucion de los errores
no es simétrica.

Regresion Lineal vs Cuantilica

Modelo Lineal Q25 = Q50 = Q75
120
80 o o
3 s -
@ g
0 S
) Q'lﬁﬁﬂ:h' %’9—
> ’0 ) N O O < -
40 o? 3 o ;—:,C’ .

0 25 50 75 100

Ficura 1. Comportamiento de la regresiéon cuantilica 7 =
0.25,0.5,0.75 vs Lineal.
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Segundo escenario (2): Se eligié una variable predictora X distribuida normal
estandar de la cual se selecciono una muestra de 100 observaciones y se
formulo el siguiente modelo:

Y=2+3X+¢
donde € se tomo de una distribucion t-Student con dos grados de libertad

para ilustrar el caso de colas pesadas, también se consideran outliers. En (2)

Regresion Lineal vs Regresion Cuantilica

Cuantil 0.25 == Cuantil 0.5 == Cuantil 0.75 Lineal (OLS)
°
e
°
°
2 _ =R
R
s = -
. ®® o, - W= =
—r °
LY e °
° ® = - ® e
8~ T ez °
o © — = °
° S == 1'._ (oo (3 o
- ‘:D - ? ° ° °
— - ° o °
- - ° ° °
- °
- c ° °

Ficura 2. Comportamiento de la regresion cuantilica 7 =
0.25,0.5,0.75 vs Lineal considerando colas pesadas y valores ex-
tremos.

se puede observar como la media condicional es afectada por los valores ex-
tremos, y como los cuantiles como ser la mediana no se ven afectados por esos
valores. Esto ilustra el potencial de la regresién cuantilica sobre escenarios
donde solo se modela la media condicional de la variable de respuesta.
Tercer escenario: En el contexto multivariado se generaron cuatro variables
predictoras de una distribucién normal estandar considerando nuevamente
errores distribuidos t-Student con tres grados de libertad. Por cada variable
se generaron 500 observaciones, y la variable de respuesta se disefio bajo el
siguiente modelo

Y=2+4+3X; —-15X0+2X3+05X,+¢

En la tabla (1) se presentan los coeficientes obtenidos mediante regresién
lineal multivariada, regresién cuantilica y regresiéon cuantilica LASSO pena-
lizada en el cual el parametro de regularizacion se obtuvo mediante validacion
cruzada usando por defecto k-folds igual a 10.

Notese, que la variable X, tiene coeficiente cero, esto indica que la regre-
sién cuantilica penalizada por LASSO permite hacer seleccién de variables.
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Predictor OLS RQ RQ LASSO
(Intercepto)  2.13946 1.995 2.0338

x1 2.88242 2.96584 2.5791

x2 —1.48015 —1.42750 —1.0682
x3 2.08958 2.07843 1.6679

x4 0.45645 0.49118 0.0000

RQ LASSO usa A = 0.1233 seleccionado por validacién cruzada. Coeficientes exactamente cero
indican que la variable fue eliminada por la penalizacién LASSO.

CuADRO 1. Comparacion de coeficientes estimados para la media-

na (1t = 0.5)
x1 X2
= ~
v g Vv | T‘
o * . ,-..". < 77. 7777777777777777777777777
N i %5 go606 00 |
N Q .
|\_ ] -
N |

(A) Cambio X3

x3

2.0

18

(c¢) Cambio en X3

0.0 0.2 04 06 0.8

(B) Cambio en Xo

X4

,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.2 04 06 08

(D) Cambio en Xy

FicuraA 3. Cambio de los coeficientes sin penalizar segiin los cuan-
tiles

Ademas, en la figura (3) se muestra como van cambiando los coeficientes de
las variables a lo largo de los cuantiles. Los cambios que se presentan los
coeficientes representan el efecto de las colas pesadas y los outliers.

5. CONCLUSIONES

La regresion cuantilica constituye un marco flexible y robusto para analizar la
distribucién condicional completa de una variable de respuesta. Su formulacién
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convexa, sus extensiones no paramétricas y los métodos computacionales modernos
como ADMM y punto interior permiten abordar aplicaciones de alta dimensién y
alto volumen de datos. La integracién de regularizacion mediante penalizaciones Ly
v Lo equilibra ajuste y complejidad en contextos de alta dimensién, articulando la
equivalencia entre formulaciones con restriccion de perdida y con multiplicadores
de lagrange, y habilitando seleccién de hiperpardmetros con validaciéon cruzada y
nociones de grados de libertad. En conjunto, la teoria de cuantiles, la regularizaciéon
convexa y los avances algoritmicos conforman un ecosistema metodolégico maduro
y versatil que se extiende hacia andlisis mas ricos accionables a lo largo de la
distribucién condicional, desde el centro hasta las colas.
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APLICACION DE PRE-TRAINING EN SERIES DE TIEMPO
CLIMATICAS EN HONDURAS

NATHALYE NICOL DERAS DURON

RESUMEN. Esta investigacién explora la integracién del pre-training como pa-
radigma del aprendizaje estadistico en series de tiempo climéaticas de Hondu-
ras. Motivada por los avances tedricos recientes en el aprendizaje estadistico
con pre-training. Esta investigacion tiene como objetivo evaluar si los modelos
preentrenados pueden mejorar la estimacién y predicciéon en variables como
la temperatura y la precipitacién. Este estudio busca conectar los desarrollos
tedricos del pre-training con los desafios practicos del anélisis de datos climé-
ticos.

ABSTRACT. This research explores the integration of pre-training as a para-
digm of statistical learning in climatic time series from Honduras. Motivated
by recent theoretical advances in statistical learning with pre-training. This
study aims to evaluate whether pre-trained models can improve estimation
and prediction for variables such as temperature and precipitation. The study
seeks to bridge the theoretical developments of pre-training with the practical
challenges of climate data analysis

1. INTRODUCCION

El pre-entrenamiento es un paradigma poderoso en el aprendizaje automético
para transferir informacién entre modelos. Por ejemplo, supongamos que se tiene un
conjunto de datos de tamano moderado con imagenes de gatos y perros y se planea
ajustar una red neuronal profunda para clasificarlos. Con el pre-entrenamiento, se
comienza con una red neuronal entrenada en un corpus grande de imagenes no
solo de gatos y perros, sino de cientos de clases. Se fijan todos los pesos de la
red excepto las capas superiores y luego se realiza un ajuste fino usando nuestro
conjunto de datos. Esto suele producir un rendimiento draméticamente mejor que
entrenar Unicamente con nuestro propio conjunto de datos [2].

En el aprendizaje estadistico contemporaneo, el pre-training ha emergido como
un enfoque fundamental para mejorar la eficiencia de los modelos predictivos, o
ahorrar al equipo desarrollador tiempo y dinero. El pre-training consiste en entre-
nar un modelo de manera previa en una tarea o conjunto de datos relacionados, de
modo que las representaciones o parametros aprendidos se utilicen como punto de
partida para una tarea especifica posterior (fine-tuning) [5].

En este sentido, el pre-training no garantiza por si mismo un mejor desempe-
no; su éxito radica en la calidad de los datos iniciales, la representatividad de las
condiciones climéticas empleadas durante el preentrenamiento y la adecuada cali-
bracién del modelo al contexto local. En el caso de Honduras el uso de pre-training

Fecha: Octubre 2025.

Palabras y frases clave. Aprendizaje estadistico, pre-training, aprendizaje supervisado.
1
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se propone como una alternativa metodoldgica prometedora, siempre que los datos
globales utilizados reflejen patrones compatibles con la dindmica climatica regional.

Esta estrategia, ampliamente estudiada en contextos de machine learning y trans-
fer learning, ha sido demostrado que consigue recuperar el soporte verdadero [2].

Desde una perspectiva estadistica, el pre-training puede entenderse como una
forma de incorporar informacién previa en el proceso de estimacion. En modelos
lineales penalizados, por ejemplo, el trabajo de Tibshirani y colaboradores [2] forma-
liza el impacto del pre-training sobre el modelo LASSO, mostrando que la inclusién
de representaciones previas reduce la varianza del estimador y mejora la precision
predictiva en alta dimensién. De forma andloga, [3] extienden estos resultados al
contexto del aprendizaje estadistico heterogéneo, demostrando que el pre-training
puede mejorar la inferencia y la prediccion en entornos con variabilidad estructural
entre unidades o dominios.

2.  JUSTIFICACION

El contexto climatico de Honduras ofrece una oportunidad idonea para aplicar y
evaluar los efectos del pre-training. Las series de temperatura y precipitacién dis-
ponibles presentan patrones temporales y espaciales complejos, asi como posibles
sesgos derivados de limitaciones en la naturaleza de los datos. En estos escenarios,
los métodos tradicionales entrenados desde cero pueden sufrir de sobreajuste o ines-
tabilidad, especialmente cuando los tamanos muestrales son pequenos.

Implementar modelos que integren pre-training permitiria transferir conocimien-
to aprendido a partir de datos globales o regionales a las condiciones locales hon-
durenias, mejorando la robustez de las estimaciones y la calidad de las predicciones
climéticas. Ademds, comparar cuantitativamente los modelos con y sin pre-training
proporcionara evidencia empirica sobre los beneficios reales de esta estrategia en
contextos de andlisis estadistico aplicado a la climatologia.

Por tanto, esta investigacion no solo contribuira a la comprension teodrica del pre-
training en modelos estadisticos, sino también a su aplicacién practica en el andlisis
y modelado de series de tiempo ambientales, un area de creciente relevancia para
la planificaciéon y adaptacién climatica, asi como en la mitigacién del riesgo debido
a las condiciones climaticas potencialmente inestables en Honduras.

Este estudio se enmarca en las lineas de investigacién de la UNAH, particu-
larmente en el eje de Investigacion de Ambiente, Biodiversidad y Desarrollo. La
aplicacion del pre-training en series climaticas integra métodos contemporaneos de
aprendizaje estadistico con necesidades nacionales en monitoreo ambiental, apor-
tando herramientas matematicas relevantes para comprender y anticipar variaciones
climéaticas locales.

3. ANTECEDENTES

El estudio del pre-training aplicado a datos climaticos ha evolucionado de manera
acelerada en los 1ltimos anos, impulsado por la necesidad de mejorar la estabilidad
y precisiéon de los modelos predictivos en contextos complejos. Diversos trabajos
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recientes han explorado el uso de representaciones preentrenadas, tanto en modelos
lineales penalizados como en arquitecturas profundas, destacando su capacidad para
reducir el sobreajuste y aprovechar informacién proveniente de dominios amplios o
heterogéneos.

Un primer trabajo es [6] donde los autores realizan un estudio en profundidad
sobre métodos de preentrenamiento para evaluar sus impactos en la prediccién me-
teorologica global, prestando especial atencién al control del sobreajuste y al andlisis
de la relacién entre la dificultad de la tarea y el rendimiento. Ademas, se presenta
un modelo llamado Baguan, que esta basado en transformadores, y que utiliza un
paradigma de preentrenamiento y fine-tuning con un autoencoder enmascarado.

En este estudio, se utiliz6 el conjunto de datos ERA5 como los valores reales
para el entrenamiento de modelos e inferencia. Este conjunto de datos incluye una
amplia gama de variables, como temperatura, humedad, precipitacion y presién
media al nivel del mar, entre otras.

Se emplean dos métricas cuantitativas especificas para evaluar la precisién de
la prediccion: el Error Cuadratico Medio Ponderado por Latitud (RMSE, por sus
siglas en inglés) y el Coeficiente de Correlacién de Anomalias Ponderado por La-
titud (ACC, por sus siglas en inglés). Para la optimizacién, se utilizé la funcién
de pérdida de Error Cuadritico Medio (MSE) durante el preentrenamiento y la
funcién de pérdida de Error Absoluto Medio (MAE) durante el ajuste fino.

Finalmente, en lo que a resultados respecta, Baguan demuestra un rendimien-
to superior, superando a IFS y Pangu-Weather en una variedad de experimentos,
ademds de sobresalir en diversas tareas posteriores, incluyendo prediccién de sub-
estacional a estacional (S2S) y prediccién regional, demostrando su versatilidad y
aplicabilidad en diferentes escalas temporales y espaciales en la prediccién meteo-
rolégica.

Un segundo trabajo, presentado por M. Schuessler, E. Sverdrup y R. Tibshirani
[3], propone estrategias de preentrenamiento que aprovechan un fenémeno presen-
te en aplicaciones del mundo real: los factores que son prondsticos del resultado
suelen ser también predictivos de la heterogeneidad del efecto del tratamiento. Los
objetivos planteados en este estudio son:

= Proponer una estrategia de preentrenamiento que va mas alla de tratar la
funcién del resultado promedio como un mero parametro irrelevante en el
marco del R-learner, aprovechando el soporte compartido entre los factores
prondsticos y predictivos para la estimacién del efecto promedio condicional
del tratamiento (CATE).

= Establecer un enfoque con tres metas principales: primero, aumentar la pre-
cision de la estimacion del CATE explotando las sinergias entre tareas de
prediccién aparentemente independientes; segundo, mejorar la recuperacion
del soporte de los modificadores del efecto o efectos de interaccion; y ter-
cero, obtener mayor informacién sobre la supuesta existencia de un soporte
compartido entre factores prondsticos y predictivos al estimar el CATE.

= Demostrar la viabilidad de este enfoque mediante el desarrollo de un conjunto
de marcos de estimacién que utilizan el R-learner basado en lasso (R-lasso)

18



y modelos no paramétricos, mostrando ademdas cémo este enfoque puede
extenderse a entornos no lineales mediante expansiones en funciones base y
bosques aleatorios.

En cuanto a los resultados, se concluyé que el empleo de esta estrategia de
preentrenamiento en el R-learner produce tasas de error mas bajas, mayor capa-
cidad para detectar heterogeneidad y menores tasas de descubrimientos falsos, lo
cual es particularmente relevante en campos como el descubrimiento de biomar-
cadores. No obstante, se identificaron algunas limitaciones: este enfoque no ofrece
beneficios de rendimiento en escenarios con poca o ninguna coincidencia entre fac-
tores predictivos y pronésticos. Otra limitacién es la dependencia de la funcién de
pérdida R (R-loss) para la eleccién adecuada de « y otros hiperpardmetros; si el
error de estimacion de los pardmetros irrelevantes es elevado, la R-loss se vuelve
menos confiable para estos hiperparametros.

Un tercer estudio es el presentado en [2] donde se desarrolla un marco para el
lasso en el que un modelo se ajusta a un conjunto de datos grande y luego se afina
utilizando un conjunto de datos mas pequenio, este tiene una amplia variedad de
aplicaciones, incluyendo modelos estratificados, respuestas multinomiales, modelos
de multiples respuestas, estimacion del efecto promedio condicional del tratamiento
e incluso gradient boosting, los cuales se evaliian durante el estudio. El algoritmo
utilizado para este objetivo, es el algoritmo 1.

Un resultado de particular utilidad para este estudio, es que en respuestas or-
denadas en el tiempo y encadenamiento de resultados, se probé de forma empirica
que para todos los puntos temporales, el preentrenamiento casi iguala o supera la
alternativa de ajustar modelos por separado.

Algoritmo 1 Lasso Pre-Entrenado con grupos de entrada fijos

Entrada: Conjunto de entrenamiento, niimero de grupos K, pardmetro « € [0, 1]
Salida: Modelos ajustados para cada grupo con cv.glmnet
1: Ajustar un tnico modelo lasso “global” al conjunto de entrenamiento, por ejem-
plo usando cv.glmnet en R.
2: A partir de este modelo, elegir el vector de pesos BO a lo largo del camino de A,
usando por ejemplo lambda.min, el valor que minimiza el error de validacién
cruzada.

3: Fijar a € [0, 1]. Definir los valores de offset y penalty.factor como sigue:
= Definir offset = (1 — a) - (XxBo + f10)-
= Sea S el soporte de [y. Definir el factor de penalizacién pf como:

pszl(jeSH—é-I(jgéS).

4: Para cada clase k = 1,..., K, ajustar un modelo individual usando cv.glmnet
con los parametros offset y penalty.factor.
5: Usar estos modelos para realizar predicciones dentro de cada grupo.

Definiciones de términos técnicos. A continuacién se presentan definiciones
breves de algunos términos utilizados a lo largo del documento, con el fin de man-
tener claridad y consistencia conceptual:
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= ERAS5: Conjunto de reanélisis climatico desarrollado por el Furopean Centre
for Medium-Range Weather Forecasts (ECMWTF), que integra observaciones
atmosféricas globales con modelos numéricos, proporcionando series histéri-
cas de alta resolucién espacial y temporal.

= Baguan: Modelo de prediccién meteorolégica basado en la arquitectura
transformer, preentrenado mediante un autoencoder enmascarado y poste-
riormente ajustado (fine-tuning) para tareas climdticas especificas. Se ha
destacado por su desempeno superior en predicciéon de variables atmosféri-
cas.

= Pre-training: Etapa en la que un modelo se entrena inicialmente sobre un
conjunto amplio o distinto de datos, con el propdsito de aprender represen-
taciones generales que luego seran refinadas en la tarea especifica de interés.

= Fine-tuning: Fase de ajuste final del modelo preentrenado, en la cual los
parametros aprendidos previamente se adaptan a las caracteristicas particu-
lares del conjunto de datos objetivo.

4. MARco TEORICO

4.1. Pre-Training y Aprendizaje por Transferencia. El pre-entrenamiento
y el aprendizaje por transferencia son técnicas fundamentales en el aprendizaje
automatico, y representan estrategias para aprovechar el conocimiento de tareas
relacionadas con el fin de mejorar el rendimiento y la eficiencia en una nueva tarea
objetivo. Ambos pueden describirse mediante formulaciones matematicas claras,
comunmente referenciadas en revisiones de literatura.

Para comprender correctamente el aprendizaje por transferencia y su respectiva
definicién, es necesario plantear unas definiciones previas.

4.1.1. Dominio. Un dominio D consiste de dos componentes. Un espacio de ca-
racteristicas x y una istribucién marginal de probabilidad P(X), donde X =
(x1,22,...,2,) € x. En general, si dos dominios son diferentes, podrian tener dis-
tinto espacio de caracteristicas, o distribuciones de probabilidad marginales.

4.1.2.  Tarea. Dado un dominio especifico, D = (x, P(X)), una tarea consiste en
dos componentes. Un espacio de etiquetas ), y una funcién predictiva f(-) (deno-
tada por T = (), f(+)) que no es observada pero puede ser aprendida por los datos
de entrenamiento, que consiste en pares (z;,y;), donde x; € X y y; € Y. La funcién
f(-) puede ser usada para predecir la etiqueta correspondiente f(z) para algin z.
Con esto, podemos definir el aprendizaje por transferencia.

4.1.8.  Aprendizaje por Transferencia. Dado algin dominio Dy y una tarea de
aprendizaje T, un dominio objetivo D7 y una tarea de aprendizaje Tr, el aprendi-
zaje por transferencia busca mejorar el aprendizaje de la funciéon predictiva objetivo
f+(+) en Dy usando el aprendizaje de Ds y T, donde Dy # Dy o Tg # Tr.
Cabe aclarar en la definicién de aprendizaje por transferencia que la condicion
D, # Dr implica que xs # x 0 Ps(X) # Pr(X) [11].

El pre-training, o pre-entrenamiento, en aprendizaje automatico, es una etapa
de entrenamiento que entrena un modelo de propdsito general (a veces llamado
foundation model) utilizando datos de acceso publico. El pre-entrenamiento suele
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ir seguido de un ajuste fino (fine-tuning) para dotar al modelo de informacién es-
pecifica para una tarea determinada [12].

Sea:

» D; = {(xgl),ygl))} el conjunto de datos fuente, extraido del dominio fuente
S con distribucién Py (X,Y).
= ¢ los pardmetros del modelo fy.
El objetivo del preentrenamiento generalmente consiste en minimizar la pérdida
L sobre los datos fuente:

min B, y)r, [L(fo(2s), ys) ]
Este paso ayuda a que fy aprenda representaciones transferibles [11].

4.2. Pre-Training en Contextos Heterogéneos. En el trabajo de Schuessler,
Sverdrup y Tibshirani (2025) amplia la comprensién del pre-training al introducirlo
dentro del marco del aprendizaje estadistico heterogéneo, donde las relaciones entre
variables difieren entre subpoblaciones o dominios. Los autores demuestran que, en
muchos problemas empiricos, los factores que son prondsticos del resultado suelen
ser también predictivos de la heterogeneidad del efecto del tratamiento. Aprove-
chando esta coincidencia, proponen una estrategia de preentrenamiento basada en
el R-learner con penalizacién tipo LASSO (R-lasso), que mejora la precisién en
la estimacién del efecto condicional promedio del tratamiento (CATE). El valor
tedrico de este planteamiento radica en que el pre-training deja de ser solo una
herramienta de prediccién para convertirse en un instrumento de mejor inferencia
estadistica, al reducir la varianza en la estimacién de los modificadores de efecto y
fortalecer la recuperacién del soporte compartido entre tareas. Esto implica que el
conocimiento adquirido durante el preentrenamiento no solo acelera la convergencia
del modelo, sino que también mejora la calidad inferencial del proceso, extendiendo
su aplicabilidad a contextos causales y de inferencia estructurada [3].

4.3. Pre-Training en Cambio Climéatico. Un ejemplo es VITA (Variational
Pretraining of Transformers for Climate Applications), que utiliza datos meteoro-
l6gicos detallados durante el pre-entrenamiento para aprender patrones climaticos
complejos y su relacién con resultados agricolas como los rendimientos de maiz y
soya. Este enfoque mejora significativamente la precisién de las predicciones, espe-
cialmente para eventos climaticos extremos que se han vuelto méas frecuentes debido
al cambio climatico. El pre-entrenamiento de VITA le permite generalizar bien a lo
largo del tiempo y en diferentes geografias, capturando dindmicas universales entre
clima y agricultura sin depender en gran medida de datos auxiliares como informa-
cion del suelo. Esto demuestra cémo el pre-entrenamiento con datos histéricos del
clima puede mejorar la resiliencia y la precisién en la prediccion de rendimientos
agricolas frente a los impactos del cambio climéatico [7].

Otra aplicacién del pre-entrenamiento en ciencia climética es la restriccién de
proyecciones climaticas a largo plazo. Las redes neuronales profundas, pre-entrenadas
con extensas simulaciones de modelos climaticos y observaciones histoéricas, pueden
capturar mejor relaciones complejas como los cambios entre el CO5 atmosférico y la
temperatura. Esto mejora la confiabilidad y precision de las proyecciones climaticas
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futuras, reduce la incertidumbre en las estimaciones del aumento de temperatura
y ayuda a evaluar cuando podrian superarse umbrales criticos, como el limite de
calentamiento global de 1.5 o C [8].

También se estan desarrollando modelos de lenguaje pre-entrenados como Cli-
mateBERT, disenados para manejar y analizar mejor textos y literatura cientifica
relacionada con el clima, mejorando tareas como la clasificacién de textos y el ana-
lisis semdantico en investigacion climatica. En resumen, el pre-entrenamiento en la
ciencia del clima ayuda a desarrollar modelos mas precisos, generalizables y robustos
frente a condiciones climaticas complejas y cambiantes. Esto beneficia las predic-
ciones agricolas, las proyecciones climaticas, las evaluaciones de impactos locales y
también el procesamiento de informacién climéatica en forma de textos, apoyando
asi los esfuerzos de mitigacién y adaptacién en el contexto del cambio climético
[10].

En resumen, el pre-entrenamiento en la ciencia del clima ayuda a desarrollar
modelos méas precisos, generalizables y robustos frente a condiciones climéaticas
complejas y cambiantes. Esto beneficia las predicciones agricolas, las proyeccio-
nes climaticas, las evaluaciones de impactos locales y también el procesamiento de
informacion climéatica en forma de textos, apoyando asi los esfuerzos de mitigacién
y adaptacién en el contexto del cambio climéatico.

5. METODOLOGIA Y RESULTADOS OBTENIDOS

Para la evaluacién empirica se consideraron cuatro modelos generadores de datos
distintos, cada uno representando un conjunto particular de supuestos de distribu-
cién. Adicionalmente, se aplicé un esquema de pre-entrenamiento en uno de estos
modelos con el fin de analizar hasta qué punto el conocimiento adquirido bajo ese
escenario especifico podia transferirse a los otros tres generadores El entrenamiento
y pre-entrenamiento se lleva a cabo usando LASSO.

La idea base de los modelos que fueron puestos a prueba para efectos de estos
experimentos, es como sigue:
Sea un modelo lineal:

Yy = XgBg +¢g
Donde:
= X, es una matriz,
= 34 es un vector de coeficientes,
e~ N(O,Jﬁ[)
Si todos los grupos comparten sus caracteristicas 84 = o, el pre-entrenamiento
no agrega ningun beneficio al ajuste individual.

5.1. MODELO I. El modelo I es como sigue:
Yy =XyBg+eg, By=Po+8g, dg~N(0,7°I,)

La motivacién detras de este, es que todos los grupos comparten los mismos
predictores y estructura general del modelo, pero cada uno tiene variaciones con-
textuales en los coeficientes, con respecto a la intuciéon de esta propuesta es que
el pre-entrenamiento puede estimar la componente compartida Sy eficientemente y
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luego realizar ajuste fino en las desviaciones locales d,. Aunque la estructura del
Modelo 1,
By = Bo +dg, 0g ~ N(OaT2Ip)v

puede recordar a la formulacién de un modelo jerarquico o de efectos aleatorios, en
este estudio no se interpreta como tal.

El objetivo del modelo es inicamente generar variaciones controladas entre grupos a
través del término d4, sin especificar una estructura multinivel completa ni realizar
inferencia sobre componentes de varianza, como suele hacerse en los modelos jerar-
quicos formales. Por tanto, el Modelo I comparte una forma matematica similar,
pero no se considera un modelo jerarquico en sentido estricto dentro del enfoque
adoptado.

5.2. MODELO II. El modelo II es como sigue:
Yy =Xg80+ ¢4, g4~N(0,0.1,), oo€{1,15,2,3}

La motivaciéon detras de este modelo es que los grupos comparten la misma es-
tructura media pero difieren en su nivel de ruido. Esto pretende capturar hetero-
cedasticidad a través de subpoblaciones, con respecto a la intuicién, se pretende
probar si el pre-entrenamiento estabiliza las estimaciones en grupos con varianzas
mas grandes.

5.3. MODELO III.
B =[1,0.8,05], B =[1,~08,0.3]
Yy = X8y + ¢4
La motivacion tras este modelo es que los grupos siguen la misma estructura de re-

gresién pero difieren en la direcciéon de uno de los efectos, pretendiendo representar
similaridad parcial entre poblaciones.

5.4. MODELO IV.
Yy = Xu1811 + XapBap + €4

El modelo 4, utiliza tinicamente las primeras dos columnas predictoras de X para
explicar Y.

5.5. Resultados obtenidos. Fijando n = 100,p = 3 obtenemos los resultados
que siguen:

Grupo n MSE Pre-Entrenamiento MSE__Entrenamiento

2 100 2.335063 2.274642
3 100 3.653632 3.636336
4 100 8.478320 8.601884

CUADRO 1. Resumen de MSE para los distintos grupos.

En los resultados obtenidos en la tabla 1 se evidencia que bajo las condiciones
evaluadas (nimero de muestra y caracteristicas fijo, el pre-entrenamiento no ofrece
mejoras significativas en los grupos 2 y 3, lo cual se refleja en los valores de MSE
muy similares.
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Esto indica que, para estos grupos, los coeficientes preentrenados no aportan
informacion adicional 1util, ya sea porque los modelos objetivo difieren sustancial-
mente del modelo preentrenado o porque los datos disponibles ya son suficientes
para una estimacion precisa.

En contraste, el Grupo 4 muestra una reduccién ligeramente mayor, pero sig-
nificativa en el MSE al usar LASSO con preentrenamiento, lo que sugiere que el
preentrenamiento es beneficioso cuando el grupo objetivo tiene una senal mas débil,
mayor ruido o menos predictores informativos.

Ademas, los resultados sugieren que el impacto del pre-entrenamiento depende
fuertemente del grado de similitud entre el modelo fuente y el modelo objetivo.
En los grupos 2 y 3, donde la estructura del modelo verdadero coincide con la
del entrenamiento base, pero la senal es suficientemente fuerte o los datos son
informativos, el pre-entrenamiento no aporta mejoras sustanciales. Esto coincide
con la teoria previa, que afirma que el beneficio del pre-training disminuye cuando
los modelos locales ya pueden estimarse con baja varianza. En contraste, el Grupo 4
presenta una estructura distinta, utilizando inicamente dos de los predictores para
generar la respuesta. En este caso, el pre-entrenamiento acttia como un mecanismo
regularizador, ayudando al modelo a estabilizar los coeficientes en presencia de
una sefial mas débil y mayor incertidumbre. Este patrén refuerza la idea de que el
pre-training es mas ttil en escenarios con heterogeneidad estructural o cuando los
datos por grupo poseen menos informacion util. En conjunto, estos hallazgos son
coherentes con los resultados de la literatura reciente, donde el pre-entrenamiento
tiende a mejorar el desempeno cuando existe algiin componente global compartido
entre dominios, pero su beneficio disminuye cuando los modelos especificos son
suficientemente robustos o cuando el soporte entre tareas difiere marcadamente.

6. CONCLUSIONES

El aprendizaje por transferencia se ha consolidado como un paradigma del apren-
dizaje automético con un alto potencial para mejorar el rendimiento de los modelos
bajo las condiciones adecuadas. Dentro de este marco, el preentrenamiento ha ga-
nado especial relevancia en los tltimos anos, pues permite aprovechar modelos de
gran escala entrenados con vastas cantidades de informacion y transferir ese cono-
cimiento a tareas mas especificas. Esto se traduce en reducciones importantes de
tiempo, recursos computacionales y costos para quienes implementan estos métodos.

No obstante, a pesar de sus numerosas ventajas, el preentrenamiento no garanti-
za mejoras en todos los casos. Existen escenarios en los que un modelo preentrenado
no supera de manera significativa a un modelo entrenado desde cero, ya sea por
diferencias sustanciales entre el dominio original y el dominio objetivo, o por la dis-
ponibilidad suficiente de datos especificos para la tarea final. Tal comportamiento
se observo también en la seccién de resultados de este trabajo, donde el preentre-
namiento no produjo mejoras consistentes en todos los grupos evaluados.

Como trabajo futuro, se plantea evaluar y validar la eficacia del preentrenamiento
en datos propios de una regién particularmente vulnerable, como Honduras, con el
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fin de generar conocimiento que contribuya a la mitigacion del riesgo asociado a la
inestabilidad climatica.
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ESTIMACION DE VELOCIDAD Y DENSIDAD VEHICULAR
MEDIANTE REDES NEURONALES CONVOLUCIONALES PARA
EL AJUSTE DE MODELOS DE REGRESION

RUTH EUNICE MORENO MELARA

Dedicado a mi familia

RESUMEN. En esta investigacion se plantea un estudio orientado a la estima-
cién de velocidad vehicular mediante técnicas de visién por computadora y
aprendizaje automatico. Los videos capturados en carreteras serdan procesados
mediante un modelo de Redes Neuronales Convolucionales (CNN) entrenado
con una base de datos elaborada por los propios autores, a partir de imagenes
y secuencias de video etiquetadas manualmente. Este modelo permitira la de-
teccién de vehiculos, sobre la cual se desarrollaran algoritmos de seguimiento y
estimacién de velocidad. Con los datos obtenidos se calculara la densidad vehi-
cular en intervalos de tiempo definidos, aplicando métodos de muestreo que
garanticen la representatividad de la informacién. Finalmente, se implementa-
rd una regresién lineal entre velocidad y densidad, cuyos coeficientes serviran
como pardmetros de entrada en un modelo de congestién vehicular formulado
mediante ecuaciones diferenciales parciales. El objetivo de la investigacién es
generar informacién precisa y validada que contribuya al desarrollo de modelos
avanzados para el andlisis y prediccién del trafico vehicular.

ABSTRACT. This research presents a study focused on vehicle speed estimation
using computer vision and machine learning techniques. The videos captu-
red on roadways will be processed through a Convolutional Neural Network
(CNN) model trained with a self-developed database, built from manually la-
beled images and video sequences. This model will enable vehicle detection,
upon which tracking and speed estimation algorithms will be developed. Using
the data obtained, vehicle density will be calculated over defined time inter-
vals, applying sampling methods that ensure representativeness and reduce
potential bias. Finally, a linear regression between speed and density will be
implemented, whose coefficients will serve as input parameters for a traffic
congestion model formulated through partial differential equations. The ob-
jective of this research is to generate accurate and validated information that
contributes to the development of advanced models for traffic analysis and
prediction.

1. INTRODUCCION

En esta investigacién se aborda el desafio de estimar la velocidad vehicular y ana-
lizar su relacion con la densidad de trafico mediante técnicas de visién por compu-
tadora y aprendizaje automatico. El estudio combina el uso de Redes Neuronales
Convolucionales (CNNs) para la deteccién de vehiculos, desarrollo de algoritmos

Fecha: Octubre 2025.
Palabras y frases clave. Redes Neuronales, Deteccién, estimacion, regresion.
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de seguimiento de objetos y la estimacion de la velocidad respectiva de cada obje-
to. A partir de esta herramienta, se pretende realizar la estimacién de coeficientes
de regresion, con el propésito de generar modelos cuantitativos que describan el
comportamiento del transito en entornos reales.

Los videos capturados en carreteras se procesan mediante un modelo de CNN
entrenado con una base de datos de elaboracion propia, construida a partir de ima-
genes y secuencias de video etiquetadas manualmente. Este modelo se encarga de la
deteccién de vehiculos en cada cuadro del video (frames), sobre la cual se desarrolla
un algoritmo de seguimiento que permite identificar, etiquetar y dar continuidad a
cada vehiculo detectado a lo largo de la secuencia. A partir de la informacién gene-
rada por este seguimiento, se implementa un algoritmo adicional para la estimacién
de la velocidad, con el fin de calcular el desplazamiento de cada vehiculo en funcién
del tiempo y la posicién. Posteriormente, con los resultados de estos dos procesos,
se disena un tercer algoritmo para el cdlculo de la densidad vehicular, permitiendo
obtener las dos variables fundamentales, velocidad y densidad, que seran empleadas
en la regresion lineal destinada a modelar su relacion.

El estudio también contempla la validacion de los datos recolectados y la eva-
luacién de los métodos de muestreo mas apropiados, con el objetivo de garantizar
la representatividad y reducir posibles sesgos en las estimaciones.

En conjunto, esta investigacién pretende aportar herramientas metodolégicas y
analiticas que contribuyan al avance del conocimiento en el campo de la vision por
computadora aplicada al transporte, favoreciendo la comprensién y modelizacién
de la dindmica vehicular en contextos urbanos y carreteros.

2.  JUSTIFICACION

La creciente congestion vehicular en los principales corredores urbanos del pais
representa un problema de gran impacto econémico y social, generando pérdidas de
tiempo, aumento en el consumo de combustible y mayores niveles de contaminacién
ambiental. En este contexto, la estimacién precisa de la velocidad y la densidad
vehicular constituye una herramienta para el disefio de politicas publicas orientadas
a la optimizacién del transito, la planificacién de infraestructura vial y la mejora
de la movilidad urbana.

Esta investigacién propone un enfoque basado en redes neuronales convolucio-
nales (CNN) y técnicas de aprendizaje automético para la deteccién, seguimiento y
estimacién de velocidad de vehiculos a partir de secuencias de video, complementa-
do con un analisis de regresién lineal entre la velocidad y la densidad vehicular. La
aplicacién de estos métodos permite generar informacién que puede ser utilizada
en modelos de predicciéon y simulacién del trafico, contribuyendo a la formulacién
de estrategias que promuevan una gestion vial maés eficiente y sostenible.

El desarrollo de esta tematica se alinea con los temas prioritarios del Eje 1
de la UNAH, “Desarrollo Econémico y Social”; especificamente en el apartado de
“Infraestructura y desarrollo territorial”, ya que sus resultados pueden apoyar la
planificacién y modernizacién del sistema vial nacional.

El enfoque interdisciplinario de este trabajo combina el rigor matemético con
herramientas de inteligencia artificial, lo que fortalece la capacidad de andlisis y
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prediccién de fendémenos complejos relacionados con la movilidad urbana, aportando
asi al desarrollo cientifico y tecnoldgico del pais.

3. ANTECEDENTES

El desarrollo de sistemas automaticos para la estimacién de velocidad vehicular
constituye una linea de investigacién dentro de la vision por computadora y los
sistemas inteligentes de transporte. La necesidad de mejorar la seguridad vial, op-
timizar el flujo de trafico y reducir la congestién ha impulsado la implementacién
de tecnologias capaces de analizar de manera automatica las secuencias de video
obtenidas por camaras de vigilancia. Estos sistemas permiten estimar la velocidad,
la densidad y la clasificacion de vehiculos en tiempo real, lo cual representa un in-
sumo esencial para la planificaciéon urbana, la deteccién de infracciones, entre otras.

[7].

Los primeros enfoques para determinar la velocidad vehicular a partir de secuen-
cias de video se basaron principalmente en el analisis de flujo 6ptico, técnica que
estima el movimiento de los pixeles entre fotogramas consecutivos para calcular la
direccién y magnitud del desplazamiento. Ruimin Ke et al. [2] propusieron un méto-
do que combina el flujo éptico con el algoritmo de agrupamiento K-Means, aplicado
a videos aéreos capturados por vehiculos no tripulados. Este enfoque permite cal-
cular la velocidad promedio de los vehiculos en escala de imagen y posteriormente
convertirla a unidades reales, alcanzando un error relativo de aproximadamente el

12%.

Con el objetivo de mejorar la precision de las mediciones, se introdujeron modelos
de calibraciéon de camara que consideran la altura de instalacién y el angulo de
inclinacién. Karim et al. [3] demostraron que el uso de pardmetros geométricos
permite transformar las coordenadas del plano de imagen al plano del mundo real,
reduciendo los errores asociados a la perspectiva. Sin embargo, la calibracién manual
de cada camara representa una limitacién significativa para la escalabilidad de estos
sistemas en entornos urbanos complejos.

Makwana y Goel [4] introdujeron un modelo que integra deteccién, clasificacién y
seguimiento de vehiculos mediante la conversién de coordenadas del centro geomé-
trico del objeto desde el sistema de imagen al sistema del mundo real. Su propuesta
establecid la base para los algoritmos posteriores que incorporan técnicas de segui-
miento, como el filtro de Kalman [5] y el algoritmo hingaro [6], para mejorar la
continuidad de las trayectorias en multiples fotogramas.

Con el auge del aprendizaje profundo, los modelos de Redes Neuronales Con-
volucionales (CNN) han revolucionado la deteccién y el seguimiento de objetos en
video. Estos avances facilitaron la identificacién automaética de vehiculos, su clasi-
ficacion en multiples categorias y el cdlculo de sus trayectorias mediante sistemas
de seguimiento en tiempo real. En este contexto, Grents et al. [1] desarrollaron un
sistema que combina un detector Faster R-CNN de dos etapas con el algoritmo de
seguimiento SORT (Simple Online and Real-Time Tracking), logrando determinar
la velocidad de los vehiculos con un error porcentual absoluto promedio inferior al
22 %. El modelo fue entrenado con méas de 52,000 objetos extraidos de videos urba-
nos y mostré un desempenio robusto frente a condiciones variables de iluminacién
y densidad vehicular.
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Las CNN, al permitir la extraccién jerarquica de caracteristicas espaciales, han
superado ampliamente las limitaciones de los métodos tradicionales de flujo 6p-
tico y de calibracién geométrica. La combinacion con filtros estadisticos como el
de Kalman posibilita la prediccién de trayectorias bajo ruido o interrupciones mo-
mentaneas, mientras que algoritmos de optimizacién como el hingaro permiten
una asignacion eficiente de detecciones entre cuadros consecutivos. No obstante, las
principales dificultades actuales se centran en la dependencia de grandes volimenes
de datos etiquetados, la sensibilidad a la resoluciéon de video y el procesamiento en
tiempo real en entornos urbanos congestionados.

En sintesis, la literatura muestra una evolucién progresiva desde los modelos ba-
sados en flujo éptico hasta los enfoques hibridos que integran aprendizaje profundo
y técnicas de seguimiento probabilistico. La tendencia actual se orienta hacia sis-
temas que no solo estimen la velocidad vehicular, sino que también incorporen la
densidad del tréfico, la deteccion de patrones anémalos y la prediccién de conges-
tién. Este panorama refleja la relevancia cientifica y tecnolégica del tema, y justifica
la continuidad de investigaciones orientadas a mejorar la precisién y eficiencia de
los modelos de estimacién de velocidad vehicular mediante CNN y métodos esta-
disticos.

4. CONSTRUCCION DE LA BASE DE DATOS

La calidad del conjunto de datos incide directamente en el rendimiento de los
modelos de visién por computador. En esta seccién se detalla el procedimiento para
la adquisicién, preprocesamiento, anotaciéon y organizacién del dataset.

4.1. Adquisicién de datos. En primer lugar, se debe realizar la adquisicién del
material visual, entendida como la recopilacién de secuencias de video o imégenes
estaticas bajo condiciones controladas o naturales. Este proceso implica definir el
entorno de captura, la resolucién objetivo, la tasa de fotogramas y el posicionamien-
to de las cAmaras, con el fin de minimizar sesgos asociados a iluminacién, oclusiones
o variabilidad excesiva del fondo.

Sea V = {V4,Va,...,Vx} el conjunto de videos obtenidos con una cdmara de
resolucién 1920 x 1080 pixeles y frecuencia de muestreo FPS = 30

Cada video Vj; es una secuencia temporal de fotogramas
Vie={Ix1,Ix2,-- - I, }
donde cada imagen
I, € REXWX3 [ = 1080, W = 1920.

Con REXWX3 —JA| A, ;. e R 1<i<H 1<j<W, 1<c<3}.

Es decir, cada imagen es un tensor (ver seccién 7.1.1) cuya primera dimensién
corresponde a la altura (H), la segunda al ancho (W), y la tercera a los tres canales
de color (RGB).
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Los frames extraidos se recopilan en el conjunto

N
7= U{IM 1<t <Ty}
k=1
En este contexto, un frame se define como una imagen estdtica obtenida a partir
de una secuencia de video. Cada video k estd compuesto por T} iméagenes ordena-
das temporalmente, denotadas como Iy 1, Iy 2, ..., Iy 1,. Por tanto, el conjunto Z
representa la coleccion total de imagenes individuales derivadas de todos los videos
considerados.

Se debe realizar una seleccién manual de imagenes relevantes dentro del conjunto
Z, de modo que unicamente aquellas muestras que aportan informacién tutil sean
retenidas para el entrenamiento del modelo. Aunque Z contiene todos los frames
extraidos, no todos ellos presentan condiciones adecuadas para la tarea de vision
por computador que se pretende abordar. Esta depuracién inicial facilita las etapas
posteriores de anotacién, ya que elimina muestras que podrian inducir ambigiiedad
o inconsistencias en el etiquetado.

Una vez identificado el subconjunto de imégenes relevantes |Z|, el siguiente pa-
so consiste en aplicar un proceso de preprocesamiento destinado a normalizar y
estandarizar el material visual.

5. PREPROCESAMIENTO DE IMAGENES

Para cada imagen original I € Z se aplicaron transformaciones definidas como
una funcién @ : REXWx3 __ RhxwX3 qonde (h,w) = (416,416) es la resolu-
cién utilizada por el modelo CNN que se han analizado, de esta forma se realiza
una normalizacién y redimensionamiento a cada imagen mediante I' = ®(I) =

Resize(I, 416, 416).

El redimensionamiento garantiza la homogeneidad espacial del conjunto de imé-
genes, pero no aborda la presencia de informacion irrelevante en la escena. Para
focalizar el procesamiento en los objetos de interés, se incorpora una etapa adicio-
nal: la segmentacién de fondo.

5.1. Segmentacion de fondo. Tras normalizar la resolucién y estructura ten-
sorial de cada imagen, es necesario aplicar operaciones que permitan reducir la
presencia de informacién irrelevante dentro de la escena. Muchas imagenes contie-
nen amplias regiones de fondo que no aportan contenido significativo para la tarea
de deteccién y seguimiento. Para eliminar este efecto y centrar el procesamiento en
los objetos de interés, se incorpora una etapa de segmentacién de fondo, descrita a
continuacion.

Sea I’ € RPX®X3 yna imagen preprocesada. Definimos una funcién de segmen-
tacién

S - thwa SN {07 1}h><w’

la cual asigna a cada pixel de la imagen un valor binario. El resultado es una
méascara M = S(I’) donde
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1, si el pixel pertenece a la region de interés,
0, si el pixel pertenece al fondo.

M($7y) :{

La imagen segmentada (regién de interés) se obtiene aplicando la méscara

IROI(xa y) = Il($7 y) ! M(Ia y)a
es decir, se conservan Unicamente los pixeles donde M = 1 y se eliminan (se
vuelven cero) los pixeles donde M = 0.

6. DATOS A UTILIZAR: ANOTACION Y CLASES DEFINIDAS

Dado que se utilizard un modelo de CNN en un esquema de aprendizaje supervi-
sado, es indispensable contar con un conjunto de datos previamente anotado. Esto
implica especificar, para cada imagen, tanto la ubicacién de los objetos de interés
como la clase a la que pertenecen. Dichas anotaciones constituyen la informacién
necesaria para que la red neuronal pueda aprender a detectar y clasificar correcta-
mente los vehiculos presentes en las imagenes.

Se debe definir C el conjunto de clases consideradas, como por ejemplo
C = {car, big_car, motorcycle, small_bus}.
Para cada imagen Igop se define un conjunto de anotaciones
B(Iror) = {(bi, ci) i,
donde:
= b; € R* representa un bounding bor en formato
bi = (i, yi, wi, hi),

siendo (z;,y;) el centro del recuadro y (w;, h;) su ancho y alto.
» ¢; € C es la clase anotada.
= my es el nimero total de objetos anotados en esa imagen.

Cada imagen anotada satisface m; > 1, es decir, contiene al menos un objeto
etiquetado.

g 1 : Vehicul
i clcuto ground truth

) ) |—|“>' bz - (lr Yi, Wi, h”L)
p; = 0,88

FigurA 1. Ejemplo grafico de un objeto anotado y su correspon-
diente prediccion. El recuadro rojo indica la anotacién de referen-
cia, mientras que el recuadro amarillo muestra el bounding box
estimado por la red
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La Figura 6 ilustra la relacién entre las anotaciones manuales utilizadas duran-
te el entrenamiento y las predicciones generadas por la CNN. El recuadro rojo
representa el ground truth b; = (x;, ¥, w;, h; ), mientras que el recuadro celeste co-
rresponde a la prediccién del modelo b = (%4, i, Wi, fli,ﬁi), que incluye tanto las
coordenadas estimadas como la probabilidad asociada a la presencia del objeto.

Cabe senialar que la anotacién se realiza sobre el mismo tipo de imagen que se-
ra utilizada para entrenar a la CNN. Si el modelo recibe la imagen original I, las
etiquetas deben definirse sobre I; si recibe Unicamente la regién segmentada Iror,
entonces la anotacién debe hacerse sobre Izor. De este modo se garantiza coheren-
cia geométrica entre las anotaciones y los datos empleados en el entrenamiento.

Estos elementos constituyen la base seméntica sobre la cual el modelo aprende
a distinguir y localizar los objetos de interés. La forma en que la CNN procesa
estas anotaciones, transforma la informacién visual y aprende representacionesse
detallara en la seccion 7.1.

6.1. Estructura y particién del dataset. Una vez completado el proceso de
etiquetado, se debe definir el dataset total, usualmente como

D = {(IRQI, B(IROI))}

En un escenario tipico de aprendizaje supervisado, este conjunto se particiona en
tres subconjuntos disjuntos destinados a funciones especificas dentro del esquema
de entrenamiento.

Dtrain U Dval U Dtest = Da Dtrain N Dval =4, Dtrain N Dtest =4,

con proporciones

|Dtrain| = 0770 |D‘7 ‘Dval| = 0320 "D|a |Dtest| = 0310 "D|
Donde

» Dirain: datos utilizados para entrenar el modelo,
= D,.1: datos usados para ajustar hiperparametros y evitar sobreajuste,
» Diest: datos reservados para evaluar el desempenio final.

Esta particién debe asegurar independencia entre subconjuntos y representati-
vidad de las clases para obtener una evaluaciéon confiable del modelo. Estas cifras
pueden variar segtin la disponibilidad de datos y la complejidad del problema. La
finalidad de esta estructura es proporcionar un marco experimental reproducible y
consistente, sobre el cual se puedan comparar distintos modelos o configuraciones.

7. ARQUITECTURA GENERAL DEL SISTEMA

El sistema opera sobre una secuencia de iméagenes extraida de un video, la cual
puede representarse como {I;}]_;, donde cada elemento I; corresponde al fotogra-
ma capturado en el instante ¢t. En la practica, un video puede considerarse como
un conjunto de imagenes ordenadas temporalmente, y su captura estd determinada
por la tasa de muestreo de la caAmara.

Sea fs la tasa de muestreo expresada en fotogramas por segundo (FPS). Este
parametro indica cuantas imdgenes son registradas en un segundo de grabacién. De
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esta forma, el intervalo temporal entre dos fotogramas consecutivos viene dado por
At = 1/ fs. Por ejemplo, si el video se registra a 30 FPS, entonces cada imagen se
obtiene cada At = 0,033 segundos.

El objetivo consiste en transformar esta secuencia en un conjunto de trayectorias
vehiculares v(*)(t) y, posteriormente, en estimaciones de velocidad v*) ().

La trayectoria de cada vehiculo se representa mediante la funcién v*)(¢), la cual
indica la posicién del vehiculo k en cada instante ¢ del video. De forma simple, se
define como

k k
Y0 = (7, ),

donde (Xt(k), Yt(k)) corresponde a la ubicacién del vehiculo en el plano real en
el tiempo t. A partir de esta trayectoria, la velocidad del vehiculo se describe me-
diante la funcién v(¥)(t), definida como la razén entre el desplazamiento entre dos
fotogramas consecutivos y el tiempo transcurrido entre ellos:

W@+ A — B
o At ’

De esta manera, v*)(¢) indica en donde se encuentra el vehiculo en cada instan-
te, mientras que v(*) (t) indica la velocidad entre un frame y el siguiente.

v ®) (1)

Para lograrlo, el sistema se divide en tres componentes:

1. Deteccién: identificaciéon de vehiculos en cada imagen mediante una CNN.

2. Seguimiento: asociacién entre detecciones de fotogramas consecutivos y
estimacién de la posicién del vehiculo en el tiempo.

3. Estimacién cinematica: cdlculo de desplazamientos reales y de velocida-
des.

De esta manera, cada moédulo transforma la informacién del anterior, permitien-
do obtener descripciones coherentes del movimiento vehicular.

7.1. Modelo de Deteccién Basado en CNN. El modelo que se planea utili-
zar en esta investigacién se enmarca dentro del campo de la Inteligencia Artificial
(TA), entendida como el conjunto de métodos que permiten que un sistema compu-
tacional realice tareas que, tradicionalmente, requieren de capacidades humanas
tales como percepcién, toma de decisiones o clasificacién. Dentro de este campo, el
Machine Learning (ML) constituye la rama que se enfoca en el diseno de algoritmos
capaces de aprender patrones a partir de datos.

A su vez, el Deep Learning (DL) es una subcategoria de ML basada en modelos
compuestos por multiples capas no lineales, capaces de aproximar funciones de al-
ta complejidad. Cuando estos modelos se entrenan utilizando datos etiquetados, el
enfoque se denomina aprendizaje supervisado.

En particular, se empleard una Red Neuronal Convolucional (CNN), un arqui-

tectura de DL especialmente disefiada para el procesamiento de imagenes, debido a
su capacidad para extraer automaticamente caracteristicas espaciales y jerarquicas
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relevantes para la detecciéon de objetos.

Segun [12], asi como en los organismos biolégicos necesitan estimulos externos
para el aprendizaje, en las redes neuronales artificiales el estimulo externo lo propor-
cionan los datos de entrenamiento que contienen ejemplos de pares entrada-salida
de la funcién que se va a aprender. Por ejemplo, la formacién los datos pueden con-
tener representaciones en pixeles de imagenes (entrada) y sus etiquetas anotadas
(por ejemplo, auto, motocicleta) como salida.

Estos pares de datos de entrenamiento se introducen en la red neuronal mediante
el uso de representaciones de entrada para hacer predicciones sobre las etiquetas de
salida. Los datos de entrenamiento proporcionan retroalimentacién sobre la exacti-
tud de los pesos en la red neuronal dependiendo de qué tan bien coincida la salida
predicha (por ejemplo, la probabilidad de auto) para una entrada particular con la
etiqueta de salida anotada en los datos de entrenamiento.

Supongamos que tenemos un conjunto de datos de entrenamiento

D= {(x(l)’ y(l))’ (x(Q), y(Q)), .y (x(n)’ y(n))}

donde () es la representacién de entrada y y® es la etiqueta de salida correspon-
diente para el ejemplo .

Una red neuronal toma la representacién de entrada z(¥) y produce una salida
predicha §(?). Esto se puede expresar como una funcién f(z(;0), donde # son los
pardmetros (pesos) de la red neuronal [12].

La exactitud de la prediccién se puede cuantificar utilizando una funcién de pér-
dida L(y(i),g(i)), que mide la discrepancia entre la salida predicha y la etiqueta
de salida verdadera. La retroalimentacién sobre la exactitud de los pesos en la red
neuronal se obtiene minimizando esta funcién de pérdida sobre el conjunto de datos
de entrenamiento.

Por lo tanto, el objetivo es encontrar los parametros 6 que minimicen la funcién
de pérdida promedio sobre todos los ejemplos de entrenamiento:

LN ) A D AN .
min =% Ly, 5") =min =3 LY, f(;0))
i=1 i=1

Donde L(y(i), gj(i)) es una funcién de pérdida especifica, como la entropia cruza-
da en el caso de la clasificacion, y =37, L(y®,9@) es la pérdida promedio sobre
todos los ejemplos de entrenamiento [12].

7.1.1.  Arquitectura general de las CNN. La arquitectura general de las CNN’s,
se componen de tres tipos de capas: las capas convolucionales, las capas de
agrupamiento (pooling) y las capas totalmente conectadas (fully-connected).

Capas de convolucién: El nombre “red neuronal convolucional” indica que la
red utiliza una operacién matematica llamada convolucién. La convolucién es un
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tipo especializado de operacién lineal. Las redes convolucionales son simplemente
redes neuronales que utilizan la convolucion en lugar de la multiplicacion de matri-
ces general en al menos una de sus capas [13].

Sea x y w dos funciones continuas, el producto especial denotado por x * w se
define mediante la integral

oo
(7.1) S(t) = (@ % w)(t) = / w(rywlt - 7) dr
— 00
se llama convolucién de = y w.
En la terminologia de redes convolucionales, el primer argumento de la Eq. 7.1
de la convolucién a menudo se denomina input y el segundo argumento (w) como
kernel [12].

Normalmente, segtin [12], cuando trabajamos con datos en una computadora, el
tiempo sera discretizado. Si ahora asumimos que x y w estan definidos solo en el
numero entero ¢, podemos definir la convolucién discreta como:

(7.2) S(i,§) = (K * I)(i,5) = > I(i —m,j —n)K(m,n)

En aplicaciones de aprendizaje automatico, la entrada suele ser un arreglo multi-
dimensional de datos y el kernel suele ser un arreglo multidimensional de pardmetros
que son adaptados por el algoritmo de aprendizaje. Nos referiremos a estos arreglos
multidimensionales como tensores [12].

Debido a que cada elemento de la entrada y el kernel deben ser almacenados
explicitamente por separado, usualmente asumimos que estas funciones son cero en
todas partes excepto en el conjunto finito de puntos para los cuales almacenamos
los valores. Esto significa que en la practica podemos implementar la sumatoria
infinita como una sumatoria sobre un nimero finito de elementos del arreglo.

Capa Pooling: La capa pooling realiza una operacién de submuestreo sobre los
mapas de caracteristicas con el fin de reducir su resoluciéon espacial y aumentar
la robustez del modelo frente a pequenias traslaciones o ruido. En el caso de mazx
pooling, la salida se define como

Y;; = méx{X,,: (p,q) € ventana(i, j)},

donde cada ventana corresponde a una regién local (por ejemplo, 2 x 2) del mapa
de activaciones X. Esta operacién conserva las caracteristicas de mayor relevancia
mientras reduce la dimensionalidad [12] .

Capa Fully Connected: La capa fully connected (o densamente conectada) in-
tegra la informacion extraida por las capas convolucionales para producir la decisién
final del modelo. Implementa una transformacion afin del tipo

y=Wax+b,

donde x es el vector de caracteristicas aplanado, W es la matriz de pesos y b es
el vector de sesgos. Esta capa se utiliza tipicamente en las etapas finales de la red
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para tareas de clasificacién o regresion [12].

De este modo, cada imagen I; es procesada por un modelo CNN de deteccién
Fo que devuelve un conjunto de cajas delimitadoras

N,
Bt = {bt,i}i:tp
donde cada deteccién b, ; contiene:

bt,i = (éEt,z‘, Yt,iy Wty he i Cti, pt,i)a
siendo:
» (244,Ye): centro de la caja,
= wy;, he st ancho y alto en pixeles,
m ¢ ;0 clase del objeto (vehiculo),
= p:;: probabilidad o confianza asignada por la red.

8. ALGORITMOS DE SEGUIMIENTO DE OBJETOS

Una vez obtenidas las detecciones cuadro a cuadro mediante el modelo de detec-
cién Fy, es necesario establecer correspondencias temporales entre ellas para cons-
truir trayectorias coherentes. Este proceso se conoce como seguimiento de objetos
(object tracking). En este trabajo se analizan dos enfoques distintos: un método
puramente geométrico basado en las salidas de la CNN y un método probabilistico
basado en el Filtro de Kalman combinado con el Algoritmo Hungaro.

8.1. Seguimiento Geométrico Basado en Detecciones. Cada objeto detec-
tado en un cuadro t estd delimitado por una caja delimitadora o bounding boz, la
cual se describe mediante sus coordenadas espaciales. El seguimiento entre cuadros
consecutivos se realiza utilizando el criterio denominado Indice de Unidn sobre la
Interseccion (Intersection over Union, IoU). De acuerdo con [11], para dos cajas
delimitadoras b;—1 y b;; en los cuadros t — 1 y t, respectivamente, el IoU se define
como

Area bt—l N bt i
ToU(bs_1,bs4) = = ( ”).
Area (bt,1 @] btJ‘)
Este indice cuantifica el grado de superposicién entre dos cajas: un valor alto
indica que ambas delimitan esencialmente la misma regién en la imagen.

IoU : 0,403

Deficiente Bien Excelente

FicuraA 2. ToU obtenido entre dos bounding boxes, con distintos
niveles de superposicién
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Para cada nuevo cuadro, se calcula el IoU entre la caja asociada al objeto seguido
en el cuadro anterior y cada una de las detecciones presentes en el cuadro actual.
A continuacién, se selecciona la caja que maximiza la superposicion:

by = arg I'%léx ToU(by—1, bt ;).

Finalmente, se establece un umbral de decisién 7 = 0,8 por ejemplo, de tal forma
que si

ToU(b;—1,b}) > T,
entonces la deteccién b} se considera la continuacion del mismo objeto en el cua-

dro t. En caso contrario, se descarta la asociacion por no existir suficiente evidencia
geométrica de continuidad [11].

Este método presenta la ventaja de ser simple y computacionalmente eficiente,
basdndose tnicamente en la informaciéon geométrica contenida en los bounding bo-
zes. Sin embargo, su desempefio se ve afectado por oclusiones, cambios bruscos en
la forma de las cajas, o inconsistencias en las detecciones de la red neuronal.

8.2. Seguimiento Basado en Filtro de Kalman. Ademds del método geo-
métrico basado en IoU, es posible emplear un enfoque méas robusto que combine
un modelo dindmico explicito con un algoritmo de asignacién éptima. Este enfoque
es el utilizado en sistemas modernos de seguimiento como SORT y DeepSORT, los
cuales integran un Filtro de Kalman con el Algoritmo Hungaro.

En este caso, el movimiento de cada objeto se modela mediante un estado latente
x¢ que incluye su posicion y velocidad en el plano de la imagen. El Filtro de Kalman
permite predecir la evolucion del estado entre cuadros consecutivos mediante el
modelo lineal

(8.1) vy =F_ w1 +wiq

(8.2) yr = Hyxy + v

donde xj y yx son los vectores de estado y de medicién en el instante k. Las
matrices Fy y Hy representan, respectivamente, la matriz de transicién del sistema
y la matriz de observacion [9].

Los términos wy y vj corresponden al ruido del proceso y al ruido de medicién.
Se asume que ambos son independientes, de media cero, ruido blanco Gaussiano, con
matrices de covarianza Qj, y Ry, respectivamente wy, ~ N(0, Q) v vi ~ N (0, Ry)
[9]

Cuando el detector proporciona una medicién z;, tipicamente asociada a las
coordenadas del centro del bounding boz, el filtro actualiza su estimacién utilizando

Zt = Hl‘t +’Ut,

donde H es la matriz de observacion y v; es el ruido de medicién con covarianza

R.

38



Luego de obtener las predicciones del Filtro de Kalman para cada objeto rastreo
activo, es necesario asociarlas con las detecciones provenientes del modelo Fy. Para
ello se construye una matriz de costos C, cuyas entradas representan la discrepan-
cia entre la predicciéon de cada objeto y cada detecciéon nueva. Con esta matriz se
resuelve un problema de asignacién éptima utilizando el Algoritmo Hiungaro, obte-
niendo asf la correspondencia entre objetos y detecciones en el cuadro actual. [10]

Esta combinacion de prediccién dindmica y asignacién éptima permite manejar
oclusiones breves, detecciones perdidas y mediciones ruidosas, proporcionando un
seguimiento mucho mas estable que el método basado inicamente en IoU. En par-
ticular, la incorporacién de un modelo de movimiento evita saltos abruptos en la
trayectoria y permite mantener la identidad del objeto aun cuando su bounding box
varie significativamente entre cuadros consecutivos.

9. ESTIMACION DE DATOS A ESCALA REAL

Para poder trasladar las coordenadas obtenidas en la imagen hacia un sistema de
coordenadas métricas coherente con la carretera, es necesario describir de manera
precisa la transformacion geométrica que relaciona ambos planos. Este proceso se
basa en una transformaciéon proyectiva que modela como un plano tridimensional,
al ser observado desde una camara, se representa como una superficie bidimensio-
nal en la imagen. Dicho mapeo se describe mediante una matriz de perspectiva que
captura la deformacién generada por la proyeccién central de la cdmara.

Segun [1] ,la transformacién proyectiva puede expresarse mediante el siguien-
te sistema, que relaciona las coordenadas del punto en la imagen (x,y) con las
coordenadas en escala real (u,v) :

w'u a b c T
wv|=\|d e f Yy
w’ g h 1 1

El vector homogéneo (w'u, w'v, w') incorpora la escala necesaria para preservar
la informacién de la perspectiva. Para recuperar las coordenadas fisicas es suficiente
con normalizar

ax +by+c de+ey+ f
U= ——-, v= ———,
gr+hy+1 gr+hy+1
Los pardmetros (a,b,c,d,e, f,g,h) contienen la informacién geométrica de la
proyeccion, tales como rotacién, escala, traslacién y deformaciéon proyectiva. Su
determinacién requiere comparar puntos de la imagen con sus equivalentes en la
escala real.

9.1. Obtencién de los parametros proyectivos. Para estimar estos para-
metros es necesario contar con cuatro puntos visibles en la carretera, cuyas coor-
denadas se conocen tanto en pixeles (z;,y;) como en la escala real (u;,v;). Cada
correspondencia genera un sistema de dos ecuaciones [1]:

az; + by + ¢ — griu; — hyu; = u;,
da; + ey + [ — gxiv — hyv; = v;.
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Al utilizar cuatro puntos, se obtienen ocho ecuaciones lineales independientes
que permiten resolver el vector de pardmetros

a=(a,b,c,d,e, f,g,h)T.

Este sistema puede resolverse mediante diversos métodos numéricos: eliminacién
gaussiana, factorizacion LU, descomposicion QR o inversién matricial, siempre que
la matriz asociada sea no singular. La singularidad puede producirse si los puntos
elegidos estan mal distribuidos sobre la carretera, demasiado cercanos entre si o
alineados de manera que no permitan reconstruir una perspectiva tnica [1].

El resultado de este proceso es una transformacién proyectiva completamente

definida que permite convertir coordenadas de la imagen en posiciones métricas
directamente sobre la superficie de la carretera.

A'(iy, 51 ) B'(i5, 45 )

A(il,jl B(i27.j2 )

D(i4, ja ) >

D(ia, ja )

Cliz, j3 )

C'(i5, 45 ) D'(i% 41 )

F1cURrA 3. Visualizacién de la regién de interés dependiendo de la
perspectiva. La imagen a la izquierda corresponde a los puntos en
pixeles y a la derecha sus equivalentes en escala real (metros).

9.2. Conversién de pixeles a coordenadas reales. De acuerdo con [1], una
vez estimada la matriz proyectiva, cualquier punto de la imagen puede convertirse
a su ubicacion real aplicando

ISTSTIEY
1
T

— <

y normalizando

5
u = —.
w

De esta forma, las coordenadas registradas por el sistema de visién en unidades
de pixeles se transforman en posiciones reales expresadas en metros, corregidas de
los efectos de la perspectiva de la cdmara. Cada punto de seguimiento del vehiculo
puede representarse ahora en un sistema de referencia fisico directamente asociado
a la carretera.

Todo esto se realiza para que la trayectoria del vehiculo en la imagen se con-
vierta en una curva sobre el plano real que pueda ser interpretable. Al trabajar
en coordenadas homogéneas, la transformacion proyectiva conserva la estructura
geométrica de la escena, y la normalizacién garantiza que cada punto corresponda
a una ubicacion verdadera sobre la carretera.
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10. ESTIMACION DE COEFICIENTES DE REGRESION SOBRE LA DENSIDAD
VEHICULAR

Una vez obtenida la velocidad de los vehiculos a partir de la deteccién, segui-
miento y proyeccion al plano real, el siguiente paso consiste en estimar la densidad
vehicular observable en la escena. En este contexto, la densidad se interpreta como
el namero de vehiculos presentes en un tramo especifico de la carretera durante
un intervalo de tiempo. A diferencia de la velocidad, que se asocia al movimiento
individual de cada vehiculo, la densidad es una magnitud colectiva que describe el
grado de ocupacion de la via.

La relacién entre velocidad y densidad vehicular ha sido estudiada extensamente
como base para el andlisis macrose6pico del trafico. Kerner [14] propone un esque-
ma de identificacion empirica del diagrama fundamental del tréfico y demuestra, a
partir de datos observacionales, que dicha relaciéon no es universal, lo que justifica
la necesidad de estimaciones contextuales como las que se plantean en este trabajo.

Para cuantificar la densidad vehicular se adopta la formulacién empirica clasica
empleada en estudios macroscépicos de trafico, en la cual la densidad se define
como el nimero total de vehiculos que ocupan un tramo de carretera de longitud
determinada. Sea L > 0 la longitud fija de un tramo de carretera observado, y sea
T = [t,t+At] un intervalo de tiempo de observacién. Denotamos por N (t) el nimero
de vehiculos contenidos en el segmento espacial de longitud L en el instante ¢. La
densidad vehicular instantanea, entendida como una funcién escalar del tiempo, se
define como

plt) = @ teT.
Esta expresion corresponde a la definicién empirica adoptada en modelos macroscé-
picos de flujo vehicular, como los estudiados por Kerner [14]. En dicho marco, p(t)
representa una variable de estado cuya evolucién describe el grado de ocupacién de
la via en funcién del tiempo. Su estimacién, junto con la velocidad media v(t), per-
mite caracterizar el estado dindmico del sistema vehicular en el tramo considerado.

Una vez teniendo las estimaciones de velocidad y densidad posibilita el estu-
dio de su relacion funcional, que en el contexto del andlisis de trafico se modela
frecuentemente mediante una regresién entre v(t) y p(t). Esta relacién, denotada
tipicamente por v = f(p), nos permitird realizar estimacién de los coeficientes de
un modelo de regresion.
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11. CONCLUSIONES

Este proyecto establece una estructura metodoldogica para abordar la estimacién
de velocidad vehicular y su relacién funcional con la densidad del tréafico, integrando
técnicas de vision por computadora con herramientas estadisticas. El enfoque con-
templa el uso de redes neuronales convolucionales (CNN) como mecanismo principal
para la detecciéon automatica de vehiculos a partir de secuencias de video, generan-
do identificaciones cuadro a cuadro en el plano imagen.

Sobre estas detecciones se plantea la implementacion de algoritmos de seguimien-
to, tanto geométricos como probabilisticos, con el objetivo de construir trayectorias
temporales coherentes para cada vehiculo. El seguimiento se concibe como un pro-
ceso de asociacion entre detecciones sucesivas, y su formulacién incluye técnicas
como el Indice de Unién sobre Interseccién (IoU), el Filtro de Kalman y el Algo-
ritmo Hungaro. Estos métodos permiten resolver la correspondencia temporal bajo
condiciones de oclusién, variabilidad geométrica o ruido en las detecciones.

Una vez definidas las trayectorias en el plano imagen, se proyectaran sobre un sis-
tema de coordenadas métricas mediante una transformacién homografica calibrada
con puntos de control en la escena. A partir de estas trayectorias fisicas, se plantea
calcular la velocidad vehicular mediante derivacién numérica del desplazamiento,
ajustada a escala real.

De forma complementaria, se define la densidad vehicular como una funcién esca-
lar en el tiempo, calculada a partir del nimero de vehiculos por unidad de longitud
en una regién espacial fija. Esta magnitud, junto con la velocidad, permite carac-
terizar el estado macroscépico del sistema vehicular.

La disponibilidad conjunta de las variables v(t) y p(t) permite formular una re-
lacién funcional que serd modelada mediante regresiéon, con el objetivo de estimar
coeficientes que describan empiricamente el comportamiento del flujo vehicular.
Estos coeficientes podran ser utilizados como insumos en modelos basados en ecua-
ciones diferenciales parciales.

En conjunto, la estructura planteada proporciona un marco metodolégico para
la generaciéon de datos observacionales y su integracién en modelos de dindamica
vehicular.
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UNA REVISION BIBLIOGRAFICA SOBRE RANDOM FOREST
(BOSQUES ALEATORIOS)

ALLAN MAURICIO CORDOVA MARTINEZ

RESUMEN. En este articulo se presenta una revisiéon bibliografica sobre Ran-
dom Forest, un algoritmo de aprendizaje automético para clasificacién y re-
gresién. Random Forest combina miltiples arboles de decisién para mejorar
precisioén, estabilidad y generalizacion, entrenando cada arbol con una muestra
aleatoria y un subconjunto de variables, lo que reduce la correlacién entre ellos
y previene el sobreajuste. Las predicciones se obtienen por votacién en clasifi-
cacién o por promedio en regresién, haciéndolo robusto frente a ruido y datos
incompletos. Ademds, permite identificar variables relevantes, consolidandose
como una técnica versatil y confiable en contextos complejos. Sus aplicacio-
nes incluyen medicina y bioinformadtica, finanzas, marketing, ingenieria, medio
ambiente y ciencias sociales.

ABSTRACT. This article presents a bibliographic review of Random Forest, a
machine learning algorithm for classification and regression. Random Forest
combines multiple decision trees to improve accuracy, stability, and genera-
lization, training each tree with a random sample of the data and a subset
of variables, which reduces correlation among trees and prevents overfitting.
Predictions are obtained by voting in classification or by averaging in regres-
sion, making the method robust to noise and incomplete data. Additionally, it
allows the identification of relevant variables, establishing it as a versatile and
reliable technique in complex contexts. Its applications include medicine and
bioinformatics, finance, marketing, engineering, environmental sciences, and
social sciences.

1. INTRODUCCION

En la actualidad, el volumen y la complejidad de los datos generados en los 4&mbi-
tos social, econémico y ambiental exigen herramientas analiticas capaces de procesar
informacion masiva y extraer patrones relevantes de manera eficiente y confiable.
En este contexto, los bosques aleatorios (Random Forests) [4] se consolidan como
una de las metodologias mas robustas del aprendizaje estadistico moderno, debido
a su capacidad para combinar multiples arboles de decisién y generar modelos de
alta precisién, estabilidad y generalizacion.

El algoritmo Random Forest, propuesto por Leo Breiman en 2001 [4], pertenece
a la familia de métodos de aprendizaje en conjunto (ensemble learning), los cuales
buscan mejorar el desempeno de los modelos individuales mediante la agregacion
de multiples clasificadores o regresores. A diferencia de los arboles de decisién tra-
dicionales, los bosques aleatorios introducen aleatoriedad tanto en la seleccién de
los datos como de las variables, reduciendo la correlaciéon entre los arboles y, en con-
secuencia, la varianza del modelo final. Esta caracteristica los hace especialmente

Fecha: Diciembre 2025.

Palabras y frases clave. Random Forest, aprendizaje automaético, clasificaciéon y regresion,
arboles de decisién.
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utiles en escenarios donde existen relaciones no lineales, alta dimensionalidad o
presencia de ruido en los datos.

El presente trabajo tiene como objetivo principal analizar los fundamentos
tedricos y metodoldgicos del algoritmo Random Forest, destacando su relevancia
en el analisis estadistico y su potencial aplicacién en problematicas nacionales. En
particular, se busca describir su funcionamiento, las medidas de pureza utilizadas
en la construccién de &arboles, los criterios de importancia de variables y otras
definiciones muy importantes obtenidas a partir de revisiones bibliograficas.

Desde una perspectiva aplicada, el estudio de los bosques aleatorios adquiere gran
importancia en el contexto hondurenio, ya que su implementacién en investigacio-
nes sociales, econdmicas y ambientales permite abordar con mayor rigor cientifico
desafios prioritarios del pais, tales como la medicién de la pobreza, la planificacién
territorial, la seguridad alimentaria y el andlisis educativo. Asimismo, el fortale-
cimiento de las capacidades nacionales en ciencia de datos e inteligencia artificial
contribuye al desarrollo de competencias técnicas avanzadas y al impulso de la in-
vestigacion cientifica en la Universidad Nacional Auténoma de Honduras (UNAH).

2.  JUSTIFICACION

Random Forest (Bosques Aleatorios) [4] es un algoritmo de conjunto que
combina miultiples arboles de decision para generar predicciones més precisas y ro-
bustas. Su capacidad para manejar grandes volimenes de datos, identificar patrones
complejos y realizar predicciones confiables lo convierte en una herramienta inva-
luable para el anélisis de fenémenos sociales, econdémicos y ambientales que afectan
al pais.

En el escenario hondureno, Bosques Aleatorios puede afrontar diversos retos
nacionales fundamentales:

1. Anilisis de Pobreza y Desigualdad: Mediante el procesamiento de datos
socioecondmicos, el algoritmo puede identificar factores determinantes de la po-
breza, predecir areas de riesgo social y evaluar el impacto de politicas ptublicas,
contribuyendo a la focalizacion eficaz de programas sociales.

2. Planificacién Territorial y Desarrollo: La técnica permite examinar pa-
trones de expansién urbana, mejorar la distribucion de la infraestructura y prever
necesidades de servicios basicos en diferentes regiones del territorio nacional

3. Seguridad Alimentaria: A través del andlisis de variables climéticas, so-
cioeconémicas y productivas, Bosques Aleatorios puede predecir zonas o dreas de
vulnerabilidad alimentaria y optimizar estrategias de seguridad nutricional.

4. Educacién y Desarrollo Humano: El algoritmo puede identificar factores
de desercién escolar, predecir rendimiento académico y optimizar la asignacion de
recursos educativos, contribuyendo al fortalecimiento del capital humano nacional.

La implementacion de Bosques Aleatorios en investigaciones nacionales fortalece
las capacidades cientificas del pais en el drea de ciencia de datos e inteligencia artifi-
cial, campos emergentes de gran importancia a nivel global. Esta técnica representa
una oportunidad para que Honduras desarrolle competencias técnicas avanzadas,
genere conocimiento aplicado y contribuya a la produccién cientifica regional en
metodologias cuantitativas.
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Por las razones ya mencionadas, la investigacion en Bosques Aleatorios se situa
dentro del Eje de Investigacién : Poblacion y Condiciones de Vida, especifi-
camente en el tema prioritario: b) Cultura, ciencia y educacién de las lineas
de investigacién de la Universidad Nacional Auténoma de Honduras (UNAH) | ya
que representa una contribucién al desarrollo cientifico-tecnolégico nacional que
impulsa las capacidades investigativas del pais y crea herramientas aplicables pa-
ra la solucién de diversas probleméticas nacionales primordiales. Tambien Random
Forest (Bosques Aleatorios) pertenece a la familia de modelos de aprendizaje super-
visado, més especificamente dentro de los modelos de ensamble (ensemble methods),
y atn més concretamente, de los métodos de bagging (bootstrap aggregating).Se
encuentra en la linea de investigacién de Modelacién Matematica (Maestria
en Matematica con Orientacién en Ingenieria Matématica de la UNAH).

3. ANTECEDENTES

El tema de los Random Forest (bosques aleatorios) ha evolucionado a partir de
los arboles de decision y los métodos de agregacion estadistica.Un resumen histoérico
sobre su desarrollo, los principales autores involucrados y los aportes mas recientes
a la teoria se muestran a continuacion:

3.1. Origenes y desarrollo histérico. Los primeros trabajos que dieron ori-
gen a los bosques aleatorios se encuentran en los estudios sobre arboles de decision,
particularmente el método CART (Classification And Regression Trees) pro-
puesto por Breiman, Friedman, Olshen y Stone (1984). Este enfoque establecié las
bases para construir modelos interpretables, aunque con alta varianza y sensibilidad
a los datos.

Posteriormente, Leo Breiman propuso en 1996 el método Bagging (Bootstrap
Aggregating) [1], que consistia en generar multiples conjuntos de entrenamiento
mediante remuestreo con reemplazo, entrenar varios modelos y combinar sus pre-
dicciones mediante promedio o voto mayoritario, reduciendo asi la varianza de los
arboles individuales.

De forma paralela, Tin Kam Ho introdujo en 1995 el Random Subspace Method
[2], que sugiere entrenar clasificadores en subespacios aleatorios de las caracteristicas
disponibles, reduciendo la correlacién entre los arboles. Mas adelante, Amit y
Geman (1997) extendieron la idea de aleatorizar tanto la seleccién de variables
como los puntos de corte en los nodos [3].

3.2. Formalizacion de Random Forests. En 2001, Leo Breiman consolid
todas estas ideas en su influyente articulo Random Forests [4], en el que formaliz6
un método de ensemble learning que combina arboles de decisiéon entrenados so-
bre muestras bootstrap y subconjuntos aleatorios de variables. Ademads, introdujo
la estimacion del error de generalizacién mediante observaciones fuera de la bol-
sa (out-of-bag, OOB) y la medicién de la importancia de las variables mediante
permutacién.

Breiman también establecié fundamentos tedéricos que relacionan el error de ge-
neralizacién con la fuerza promedio de los clasificadores individuales y la correlacién
media entre ellos, mostrando que un equilibrio entre ambos factores produce mo-
delos mds robustos y precisos [4].
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3.3. Desarrollos tedricos recientes. Durante las dos tltimas décadas, se han
producido importantes avances en el analisis tedrico y en las variantes del método.
Biau, Devroye y Lugosi (2008) demostraron resultados de consistencia para
bosques aleatorios y variantes simplificadas, estableciendo una base teérica sdlida
para su comportamiento asintdtico [5].

Recientemente, se han propuesto miltiples extensiones y mejoras del enfoque
original de Breiman:

= Chen, Wang y Lei (2024) presentaron el Data-driven Multinomial Random
Forest, una variante con consistencia fuerte y formulacién multinomial maés
estable [6].

= Dorador (2024) propuso estrategias de Forest Pruning para eliminar arboles
redundantes sin pérdida de precisién [7].

= Ignatenko, Surkov y Koltcov (2024) desarrollaron Random Forests con
criterios de informacién basados en entropias paramétricas, mejorando la
calidad de las divisiones [8].

= Ren, Zhu, Bai y Zhang (2024) introdujeron el modelo Intuitionistic Fuzzy
Random Forest, que combina conjuntos difusos con aprendizaje de bosques
[9].

= Konstantinov, Utkin, Lukashin y Muliukha (2023) propusieron los
Neural Attention Forests, que integran mecanismos de atencién derivados de
redes neuronales [10].

Estos trabajos reflejan la tendencia actual hacia modelos combinados mas efi-
cientes, capaces de manejar incertidumbre y datos de alta dimensionalidad, man-
teniendo la esencia del enfoque propuesto por Breiman en 2001.

CuUADRO 1. Evolucién histérica y desafios de Random Forest

Etapa / Autor Contribucién principal Desafios actuales

CART (1984) [11] Base de los arboles de decisién ~ Alta varianza

Bagging (Breiman, 1996) Reduccién de varianza Falta de diversidad entre mode-
[1] los

Random Subspace (Ho, Seleccion aleatoria de variables  Sensibilidad a pardmetros

1995)

Random Forest (Breiman, Combinacién bagging + aleato- Interpretabilidad limitada
2001) [4] riedad
Avances recientes (2023— Consistencia fuerte, integraciéon Escalabilidad y eficiencia
2024) con redes neuronales y légica di-

fusa

3.4. Sintesis comparativa. En resumen, los bosques aleatorios constituyen una
de las técnicas mas exitosas y versatiles del aprendizaje estadistico moderno. Su
robustez, precisién y facilidad de uso han llevado a su aplicaciéon en practicamente
todas las areas de la ciencia de datos, y contintian siendo objeto de investigacién
activa en teoria estadistica y optimizacién computacional.
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4. CONCEPTOS PRELIMINARES

Leo Breiman en su articulo Random Forest (2001) [4], compara resultados obte-
nidos con modelos ya antes establecidos como ser:

= Adaboost (Adaptive Boosting): Propuesto por Freud y Shapire en 1996,
es un algoritmo determinista que ajusta iterativamente los pesos del conjun-
to de entrenamiento. En cada iteracién, las observaciones mal clasificadas
reciben un mayor peso, de modo que los clasificadores posteriores se enfo-
quen en los errores cometidos por los anteriores. La prediccién final es una
combinacién ponderada de todos los clasificadores entrenados, lo que reduce
el sesgo y mejora la precisién.

= El método Bagging (Bootstrap Aggregating) es el antecesor de Random
Forest y fue propuesto por Breiman en 1996 [1]. Es un método general de
reduccién de la varianza que se basa en el remuestreo bootstrap (con reem-
plazo) junto con un modelo de regresion o clasificacién. Su procedimiento se
puede resumir en los siguientes pasos:
1. Se generan multiples subconjuntos de entrenamiento mediante remues-
treo con reemplazo del conjunto original.
2. Se entrena un modelo (por ejemplo, un arbol de decisién) en cada sub-
conjunto.
3. Para predecir una nueva observacién, se promedian (en regresién) o se
votan (en clasificacién) las predicciones de los distintos modelos.

Este proceso produce un estimador més estable, especialmente ttil para
modelos con alta varianza como los arboles de decisiéon. El Bagging es una
técnica fundamental en el aprendizaje en conjunto (ensemble learning), y
senté las bases tedricas sobre las que mas tarde se construiria el método
Random Forest.

= Los arboles de decisién son modelos jerarquicos de aprendizaje automéatico
utilizados tanto para tareas de clasificaciéon como de regresion. Su estructura
divide recursivamente el espacio de los predictores en regiones homogéneas
respecto a la variable respuesta. Algunas definiciones basicas son:
1. Nodo raiz: punto inicial que contiene el conjunto completo de datos.
2. Nodos internos: condiciones o preguntas basadas en caracteristicas de
los datos.
3. Ramas: conexiones entre nodos que representan las respuestas a dichas
condiciones.
4. Hojas: representan las decisiones o predicciones finales.

Una de las principales ventajas de los arboles de decisién es su interpre-
tabilidad, ya que pueden visualizarse ficilmente y las reglas de decision se
expresan de forma légica y transparente. No obstante, un solo arbol tiende
a tener alta varianza: pequenos cambios en los datos pueden alterar signifi-
cativamente la estructura del arbol.

En sintesis, las ideas de Bagging, seleccion aleatoria de variables y el método
CART se unifican en el algoritmo de Random Forest, pero con una gran mejora en
robustez y capacidad de generalizacién.
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5. ESTIMACION MEDIANTE BOSQUES ALEATORIOS

El término “bosques aleatorios” (random forests) tiene diferentes interpretacio-
nes segun el contexto. Algunos investigadores lo utilizan como un término general
para cualquier método que combine multiples arboles de decisién con componentes
aleatorios, sin importar la técnica especifica de construccién. Otros autores lo re-
servan exclusivamente para el algoritmo desarrollado por Breiman en 2001 [4]. En
este documento, adoptaremos principalmente esta segunda perspectiva.

Los bosques aleatorios son lo suficientemente flexibles para resolver dos tipos
de problemas: clasificacién supervisada (asignar categorfas) y regresion (predecir
valores numéricos). Para facilitar la comprension inicial, se enfocara en problemas
de regresién y posteriormente se revisara brevemente el caso de clasificacién. El
objetivo es presentar el algoritmo de manera clara y matematicamente rigurosa.

El contexto general es el de la regresién no paramétrica. Observamos una variable
de entrada aleatoria X € X C RP y queremos predecir una respuesta numérica
aleatoria Y € R estimando la funciéon de regresion:

m(z) =E[Y | X = z].
Para lograr esto, disponemos de un conjunto de entrenamiento:
Dn = ((le Yl)a ceey (Xnv Yn))

compuesto por variables aleatorias independientes con la misma distribucién que el
par prototipo (X,Y). La meta u objetivo es utilizar estos datos para construir un
estimador m,, : X — R que aproxime la funcién m.

Decimos que el estimador m,, es consistente en error cuadrdtico medio si:

E[(m,(X) —m(X))*] = 0 cuando n — oo,

donde la esperanza considera tanto la aleatoriedad de X como la de la muestra D,,.

Un bosque aleatorio es esencialmente una coleccién de M &arboles de regresion,
cada uno construido con cierta aleatoriedad. Para el arbol niimero j en esta colec-
cién, el valor predicho en un punto x se denota:

my (z; Gj’Dn)a

donde O1,...,0), son variables aleatorias independientes e idénticamente distri-
buidas.

La variable aleatoria © es independiente del conjunto de entrenamiento D,, y se
utiliza para introducir dos tipos de aleatoriedad: primero, para remuestrear (selec-
cionar aleatoriamente un subconjunto de) los datos antes de construir cada drbol;
segundo, para seleccionar qué variables considerar al hacer cada division en el arbol.

Matematicamente, cada arbol individual predice mediante:

mp(z;0;,Dy) = Z

i€D;(0;)

1{x,eA,(x;0,,D.)} Vi

donde:

= D! (0;) representa el subconjunto de datos seleccionados para construir este
arbol (la muestra remuestreada),

» A,(2;0,,D,) es la regién o celda terminal del drbol que contiene al punto
T,y

» N, (2;0;,D,) es la cantidad de puntos (de los seleccionados) que caen dentro
de esa celda.
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En términos simples, cada arbol particiona el espacio de caracteristicas en re-
giones (como dividir un mapa en zonas), y para predecir en un punto nuevo z,
encuentra en qué regién cae y promedia los valores Y de los puntos de entrena-
miento en esa regién.

La prediccién final del bosque con M arboles se obtiene promediando:

M
1
(1) mM,n(x;Gl,...,G)M;Dn): Mzm”(x’gj’D")
j=1

En la implementacién estdndar de R (paquete randomForest) [60], el valor pre-
determinado es ntree = 500, es decir, se construyen 500 arboles. Como podemos
elegir M tan grande como queramos (limitado solo por recursos computacionales),
tiene sentido desde el punto de vista tedrico considerar el limite cuando M tiende
a infinito:

Meoo,n(x; Dy) = Eg[my,(z;0; Dy,)].

Aqui, Eg denota el valor esperado respecto a la aleatoriedad de ©, dado el
conjunto de datos D,,. La ley de los grandes niimeros justifica esta operacién, esta-
bleciendo que:

lim mpsn(2;01,...,00;Dy) = Moo n(x; Dy)
M—oc0

casi seguramente, dado D,,.
Para simplificar la notacién se escribird simplemente mqo (%) en lugar de Mmoo n (2; D).

6. DESCRIPCION DEL ALGORITMO

El procedimiento para construir un bosque aleatorio con M arboles es el siguien-
te:

Paso 1: Remuestreo previo. Antes de construir cada arbol, se seleccionan
aleatoriamente a,, observaciones del conjunto original, ya sea con o sin reemplazo.
Unicamente estas a,, observaciones se utilizaran para construir y hacer predicciones
con ese arbol particular.

Paso 2: Construccién del arbol mediante divisiones aleatorias. En cada
nodo del arbol, el algoritmo no considera todas las p variables disponibles, sino que
selecciona aleatoriamente un subconjunto de mtry variables. Entre estas variables
seleccionadas, elige la que produce la mejor divisién segun el criterio CART .

Paso 3: Criterio de parada. La construccién de cada arbol contintia hasta
que cada nodo terminal (hoja) contiene menos de nodesize observaciones.

Paso 4: Prediccién individual. Para un nuevo punto z, cada arbol predice
promediando los valores Y; de las observaciones cuyos X; caen en la misma celda
terminal que x.

Paso 5: Agregacién. La prediccién final se obtiene promediando las prediccio-
nes de todos los arboles.

El Algoritmo 1 describe formalmente este proceso.

Algoritmo 1. Construccién y prediccién de un bosque aleatorio.

1. Entrada: Datos D,, = {(X;,Y;)};, ndmero de arboles M, pardmetros a,,
mtry, nodesize.

2. Para cada arbol j =1,...,M:
a) Seleccionar aleatoriamente a,, observaciones de D,, (con o sin reemplazo).
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b) Construir un arbol de regresion:
= En cada nodo, seleccionar aleatoriamente mtry variables de las p
disponibles.
» Encontrar la mejor divisién entre estas mtry variables usando el
criterio CART.
= Continuar dividiendo hasta que cada nodo terminal tenga menos de
nodesize observaciones.
¢) Almacenar el arbol resultante m,,(z;©;,Dy,).

3. Salida: Prediccién final mediante promedio: may,, (2; D) = 55 Zj\il mp(z;0,,Dy).

Aunque pueda parecer complejo inicialmente, el algoritmo se basa en ideas sim-
ples. Los tres parametros clave son:

1. a, € {1,...,n}: Tamano de la submuestra para cada arbol;
2. mtry € {1,...,p}: Numero de variables candidatas consideradas en cada
divisién;
3. nodesize € {1,...,a,}: Tamaflo minimo de nodo (criterio de parada).
En el modo de regresion de randomForest en R, los valores predeterminados son:
mtry = [p/3], a, = n (usar todos los datos con reemplazo, es decir, bootstrap), y
nodesize = 5.

Forma extendida del algoritmo:

Algoritmo 1 Valor predicho del bosque aleatorio de Breiman en x.

Entrada: Conjunto de entrenamiento D, ntimero de drboles M > 0, an € {1,...,n}, mtry €
{1,...,p}, nodesize € {1,...,an} y z € X.
Salida: Prediccion del bosque aleatorio en x.
1: para j=1,...,M hacer
2: Seleccionar a, puntos, con (o sin) reemplazo, uniformemente en D,. En los siguientes
pasos, solo se usan estas a, observaciones.
3 Sea P = (X) la lista que contiene la celda asociada con la raiz del drbol.
4 Sea Pgnal = 0 una lista vacfa.
5 mientras P # () hacer
6: Sea A el primer elemento de P.
7 si A contiene menos de nodesize puntos o si todos los X; € A son iguales entonces
8 Eliminar la celda A de la lista P.
9 Phinal < Concatenar(Pgpal, A).

10: si no

11: Seleccionar uniformemente, sin reemplazo, un subconjunto My, C {1,...,p} de
cardinalidad mtry.

12: Seleccionar la mejor divisién en A optimizando el criterio de division CART a lo
largo de las coordenadas en M,y (ver texto para detalles).

13: Dividir la celda A segun la mejor divisiéon. Llamar Ay y Ag a las dos celdas resul-
tantes.

14: Eliminar la celda A de la lista P.

15: P <+ Concatenar(P, AL, Ar).

16: fin si

17: fin mientras

18: Calcular el valor predicho my (x; ©;, Dy) en x igual al promedio de los Y; que caen en la
celda de z en la particién Pgpal-

19: fin para

20: Calcular la estimacién del bosque aleatorio m s p (z;©1, ..., O, Dn) en el punto x de acuerdo
con (2)
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El criterio de division CART. [11]

Por simplicidad, consideremos primero un arbol sin remuestreo que usa todos los
datos D,,.

Sea A una celda (regién) cualquiera, y sea N, (A) el ntimero de puntos que caen
en A. Una divisién potencial en A se define por un par (j, z), donde:

= j es el indice de una variable (coordenada) en {1,...,p}
= 2 es el valor umbral de corte en esa coordenada

Denotemos por C4 el conjunto de todas las divisiones posibles en A, y sea X; =
s X;).

K3

Para cualquier divisién candidata (j,z) € Ca, el criterio CART de regresién
mide la reduccién en varianza lograda por la divisién:
(6.1)

n

Lreg7 (.77

z:l z:l
donde:
Ap={zeAd:zV <z}, Ap={z e A:zY) > 2},

v Ya,Ya,,Ya, representan el promedio de los valores Y; en las regiones A, A, y Ar
respectivamente. Por convencion, si ningin punto cae en una regién, su promedio
se define como 0.
La mejor divisién (57, z%) para la celda A se encuentra maximizando:
(Jn-2n) €arg  mix  Liegn (], 2)-
JeMery,(j,2)€Ca

En caso de empate, se elige el punto medio entre dos observaciones consecutivas.
Este procedimiento se adapta naturalmente al caso con remuestreo, optimizando
sobre las a,, observaciones seleccionadas en lugar de todo D,,.

En resumen, el algoritmo en cada nodo: (1) selecciona aleatoriamente mtry coorde-
nadas, (2) evalta el criterio (2) para todas las divisiones posibles en esas direcciones,
v (3) selecciona la mejor. Este criterio, introducido por Breiman et al. (1984) [27]
en el algoritmo CART, mide esencialmente cuanto disminuye la varianza al realizar
una divisién.

Existen tres diferencias fundamentales entre CART [11] tradicional y los bosques
aleatorios de Breiman:

1. Seleccién aleatoria de variables: En bosques aleatorios, solo se conside-
ran mtry variables seleccionadas aleatoriamente en cada divisién, no todas
las p variables.

2. Sin poda: Los arboles individuales crecen completamente hasta que cada
nodo terminal contiene como maximo nodesize observaciones (o todos los
puntos son idénticos).

3. Remuestreo: Cada arbol se construye con una submuestra de a,, observa-
ciones. Cuando a,, = n con reemplazo, tenemos el modo bootstrap; cuando
a, < mn, tenemos submuestreo.

6.1. Clasificacién Supervisada. Para mayor claridad, se enfocara en clasifica-
cién binaria, aunque los bosques aleatorios pueden manejar naturalmente problemas
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multiclase. En este contexto, la variable de respuesta Y toma valores en {0,1} y el
objetivo es predecir Y dado X.

Un clasificador m,, es una funcién medible que intenta estimar la etiqueta Y a
partir de X y los datos D,,. Se considera consistente si su probabilidad de error
converge a la del clasificador 6ptimo de Bayes:

L(my) =Pm,(X) #Y] — L™,
donde L* es el error del clasificador de Bayes:

1, siPY =1|X=2]>PY =0]| X =2z,
m”(z) =
0, en otro caso.

En clasificacién, el bosque aleatorio realiza un voto por mayoria entre los arboles:

Lo % (2;0;,Dy) > !
St mnp(T;9;, Un o
Marn(z;01,...,00,Dp) = M = j 5

0, en otro caso.

Cada arbol individual clasifica usando voto mayoritario en su celda terminal:

1, si hay méas puntos de clase 1 que de clase 0 en la celda de =z,
mn(x; @j7 Dn) =
0, en otro caso.

Mas formalmente, para una region A:

1, si Z Lix,en v,=1) > Z lix,eA,vi=0}, T €A,
mn(2;0;,Dy) = i€D; () i€D;,()
0, en otro caso.

El criterio CART para clasificacién se modifica para medir la pureza de nodos.
Para una celda A, sean pg ,(A) y p1,n(A) las proporciones empiricas de las clases 0
y 1. El criterio de divisién es:

(6.2)
N.(4) N, (4)

Este criterio se basa en el indice de impureza de Gini 2pg ,,(A)p1,,(A), que
mide qué tan mezcladas estdn las clases en un nodo. Un nodo puro (todos de la
misma clase) tiene Gini = 0, mientras que un nodo con 50 % tiene el valor maximo.

Para clasificacién binaria (Y € {0,1}), optimizar Lejass,n €S equivalente a opti-
mizar Lieg n, por lo que los arboles resultantes son idénticos. La diferencia estd en
la prediccién: clasificacion usa voto mayoritario, regresién usa promedio.

Los valores recomendados para clasificacién son: nodesize = 1 y mtry = /p.

Lclass,n(ja Z) = Po,n (A)pl,n(A>_ pO,n(AL)pl,n (AL>_ pO,n(AR)pl,n<AR>7

6.2. Ajuste de Parametros. La literatura sobre el ajuste éptimo de M, mtry,
nodesize y a, es limitada, con contribuciones notables de Diaz-Uriarte y de An-
drés (2006) [41], Bernard et al. (2008) [20] y Genuer et al. (2010) [44]. El ajuste
de parametros puede ser computacionalmente costoso, especialmente con grandes
conjuntos de datos.
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Numero de arboles (M): La varianza del bosque disminuye al aumentar M,
y mas arboles generalmente mejoran las predicciones. Importante: aumentar M no
causa sobreajuste. Siguiendo a Breiman (2001) [4]:

T E [ (mara(X;61,., 0ar) - m(X))Q] —E [(mm,n(X) - m(X)>2]

El costo computacional crece linealmente con M, por lo que se busca un equi-
librio entre precisién y tiempo de cémputo. Diaz-Uriarte y de Andrés (2006) [41]
argumentan que M es irrelevante (siempre que sea suficientemente grande) en pro-
blemas de microarrays. Genuer et al. (2010) [44] ofrecen una discusién exhaustiva
sobre este parametro.

Tamano minimo de nodo (nodesize): Los valores predeterminados (1 para
clasificacién, 5 para regresion) son generalmente buenos, aunque carecen de respaldo
tedrico riguroso. Kruppa et al. (2013) [54] discuten un algoritmo para ajustar este
pardametro en clasificacion.

Numero de variables por divisién (mtry): Diaz-Uriarte y de Andrés (2006)
[41] encuentran que mtry tiene poco impacto, aunque valores muy grandes pueden
reducir el rendimiento. Genuer et al. (2010) [44] sugieren que el valor predetermi-
nado a menudo es éptimo o demasiado pequeno, por lo que un enfoque conservador
es usar mtry tan grande como sea computacionalmente factible.

Una ventaja importante: los pardmetros se pueden ajustar usando la estimacion
out-of-bag (OOB), sin necesitar un conjunto de validacién separado. Como cada
arbol se construye con una muestra bootstrap, aproximadamente un tercio de las
observaciones quedan fuera y pueden usarse como conjunto de prueba interno. El
error OOB, calculado sobre estas observaciones excluidas, permite ajustar pardme-
tros de manera eficiente.

7. MODELOS SIMPLIFICADOS Y PROMEDIOS LOCALES

7.1. Modelos Simplificados. A pesar de su uso extensivo, existe una brecha
entre la teorfa y la practica de los bosques aleatorios. La complejidad del algoritmo
completo dificulta el andlisis mateméatico riguroso de sus propiedades fundamenta-
les.

Como observo Denil et al. (2014) [39], esto ha creado una division en la literatura:
los trabajos empiricos proponen extensiones elaboradas sin garantias tedricas claras,
mientras que los trabajos teéricos se enfocan en versiones simplificadas donde el
analisis es mas manejable.

Un marco béasico para el andlisis teérico involucra bosques aleatorios puros,
donde los arboles se construyen independientemente de los datos de entrenamiento
D,,. El ejemplo mas estudiado es el bosque centrado, que opera asi:

1. Sin remuestreo (se usan todos los datos);
2. En cada nodo, se selecciona uniformemente una coordenada de {1,...,p};
3. Se divide en el centro de la celda a lo largo de esa coordenada.

Este proceso se repite recursivamente k veces, produciendo un arbol binario
completo con 2¥ hojas. El pardmetro k controla el tamafo de las celdas finales
y actia como parametro de suavizado: debe ser lo suficientemente grande para
capturar variaciones locales, pero no tanto que impida el promediado efectivo.

Los bosques uniformes son una variante donde los cortes se realizan en posi-
ciones aleatorias uniformes en lugar del centro, con andlisis matematico similar.
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Breiman (2004) [31], Biau et al. (2008) [23] y Scornet (2015a) [71] demostraron
que los bosques centrados son consistentes (para clasificacién y regresion) siempre
que k — 00y 5r — oo simultdneamente. La demostraciéon se basa en resultados
generales de consistencia para drboles aleatorios [40].

Si X es uniforme en [0, 1]?, hay en promedio g puntos por nodo terminal. La
eleccién k ~ log n (drboles completamente crecidos) no satisface 5z — oo, revelando
una limitacion del andlisis. Ademas, como no hay bagging, la consistencia proviene
del arbol individual, no del ensamble.

Para tasas de convergencia, Breiman (2004) [31] y Biau (2012) [22] consideran
variables X ¥) independientes con funcién de regresién m(z) que depende solo de un
subconjunto S (Strong) de variables. Si la probabilidad de dividir segin la variable
j tiende a 1/|S| y m es Lipschitz, entonces:

E oo, (X) = m(X)]* = O(n 07/ (Sex240.75)),

Esto muestra que la tasa depende solo de |S| (variables relevantes), no de p
(dimensién total), demostrando adaptacién a esparsidad. Esta tasa es més rapida
que la tasa estandar n~2/(P*2) cuando |S| < [0,54p).

Genuer (2012) [45] estudia bosques puramente uniformes (PURF) en una
dimension, demostrando consistencia y, bajo suposiciones Lipschitz, la tasa:

E[Moon(X) — m(X)]2 = O(n_2/3),

que es minimax 6ptima para funciones Lipschitz [75, 76].

Biau (2012) [22] muestra que los bosques centrados reducen el error de estimacién
(a tasa lenta 1/logn) incluso con &rboles completamente crecidos (k ~ logn),
un beneficio del promediado. Arlot y Genuer (2014) [16] demuestran que ciertos
bosques también mejoran la tasa de error de aproximacion comparado con arboles
individuales.

7.2. Bosques, Vecinos y Kernels. Consideremos variables i.i.d. Xy,...,X,,.
En geometria aleatoria, X; es un vecino méas cercano por capas (LNN) de z si
el hiperrectangulo definido por x y X; no contiene ningtin otro punto de datos. El
numero de LNN de z suele ser mayor que uno y depende de la configuraciéon de los
puntos.

Sorprendentemente, los bosques sin remuestreo estan intimamente relacionados
con los LNN. Si cada hoja contiene exactamente un punto y no hay remuestreo,
entonces la prediccion del bosque en x es un promedio ponderado de los Y; cuyos
X, son LNN de z:

n
i=1
donde W,,;(z) =0si X; noes LNNdezy Y i Wy,(z) = 1.

Esta conexién fue senalada por Lin y Jeon (2006) [61], quienes demostraron que
si X es uniforme en [0, 1]? y el crecimiento es independiente de Y7, ...,Y,,, entonces:

o1
B o0 (X) = m (X)) = O(nméxaog w1 ) ’

donde N5 es el nimero maximo de puntos en celdas terminales.
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Desafortunadamente, los pesos exactos (Wp1, ..., Wy, ) para el bosque de Brei-
man son desconocidos, y una teoria general de bosques en el marco LNN atn no
existe.

Sin embargo, la ecuacién (3) permite analizar bosques mediante promediado
local. Para un bosque finito sin remuestreo:

M (;01,...,00) = Y Wi(2)Yi,
i=1

donde:
M

_ 1 l{Xi6A7l($§®j)}

Los pesos son no negativos y suman uno. Las observaciones en celdas densa-
mente pobladas contribuyen menos que aquellas en celdas menos pobladas, una
caracteristica importante cuando los bosques se construyen independientemente de
los datos.

Al hacer M — oo, la estimacién puede escribirse (aproximadamente) como:

~ Z?:l Y;Kn(sz 1’)

(4) moo,n(l') ~ Z?:1 Kn(Xj,l‘) )

donde:
K, (z,z) =Pglz € A, (z;0))].

La funcién K,(-,-) se llama kernel del bosque y caracteriza la forma de las
celdas. K, (z,z) es la probabilidad de que z y z caigan en la misma celda en un
arbol aleatorio, sirviendo como medida de proximidad. Cada bosque tiene su propio
kernel, pero el asociado a divisiones CART depende fuertemente de los datos y es
dificil de analizar.

Notese que K, no necesariamente pertenece a la familia de kernels Nadaraya-
Watson [66, 80], que tienen la forma homogénea:

Kn(z,2) = %K (56;2)

Por ejemplo, Scornet (2015b) [72] demostré que para un bosque centrado en
[0,1]7 con pardmetro k:

k! N\ &
Knp(2,2)= ,M<p) || RE T
ki, kp p j=1

La conexioén entre bosques y estimacion por kernel fue mencionada por Breiman
(2000a) [29] y desarrollada por Geurts et al. (2006) [46]. Arlot y Genuer (2014)
[16] muestran que ciertos bosques simplificados pueden escribirse como estimadores
kernel y proporcionan sus tasas de convergencia.

Davies y Ghahramani (2014) [35] incorporan kernels basados en bosques en algo-
ritmos de procesos gaussianos, demostrando empiricamente que superan a kernels
lineales y de base radial. Los kernels de bosques también pueden usarse como en-
trada para métodos kernel estandar como Analisis de Componentes Principales con
Kernels y Maquinas de Vectores de Soporte.
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8. FUNDAMENTOS TEORICOS Y VARIANTES DE LOS BOSQUES ALEATORIOS DE
BREIMAN

Esta seccién aborda el algoritmo original de Breiman (2001) [4]. Como la cons-
trucciéon depende de toda la muestra D,,, un analisis matemético completo es dificil.
Para avanzar, se han investigado los mecanismos individuales por separado.

8.1. EIl Mecanismo de Remuestreo. El algoritmo de Breiman selecciona n
veces de entre n puntos con reemplazo para cada arbol. Este procedimiento, que
se remonta a Efron (1982) [42], se denomina bootstrap. Generar muchas mues-
tras bootstrap y promediar los predictores se conoce como bagging (bootstrap-
aggregating), propuesto por Breiman (1996) [28] para mejorar aprendices débiles o
inestables.

Aunque el bootstrap es simple conceptualmente, su teoria es compleja. La dis-
tribucién de la muestra bootstrap D;; difiere de la original D,,. Por ejemplo, si X
tiene densidad y muestreamos con reemplazo, con probabilidad positiva al menos
una observacion se selecciona multiples veces, creando puntos idénticos en D}. Por
tanto, D} no puede ser absolutamente continua.

El papel del bootstrap en bosques aleatorios permanece poco comprendido. La
mayoria de anélisis lo reemplazan por submuestreo, donde cada arbol se construye
con a, < n ejemplos elegidos sin reemplazo [78, 73]. Frecuentemente se asume que
an/n — 0, excluyendo el régimen bootstrap.

El anélisis de bosques medianos [71] proporciona intuicién sobre el submues-
treo. Un bosque mediano es similar al centrado, pero:

= El corte se realiza en la mediana empirica (no el centro)
= La construccién continia hasta que cada celda contiene exactamente una
observacion

Aunque cada arbol individual es generalmente inconsistente (el nimero de casos
en hojas no crece con n), Scornet (2015a) [71] demuestra que si a,, /n — 0, el bosque
mediano es consistente.

La condicién a,/n — 0 garantiza que:

= Cada observacién (X;,Y;) se usa en el arbol j con probabilidad pequefia
cuando n crece
= El punto = queda desconectado de (X;,Y;) en una gran proporcién de drboles

Si esto no ocurriera, el valor predicho en = estaria excesivamente influenciado
por pares individuales (X;,Y;), haciendo el ensamble inconsistente. El error de
estimacién es pequefio cuando la probabilidad maxima de conexién entre x y todas
las observaciones es pequeiia. Asi, a,,/n — 0 es una forma conveniente de controlar
estas probabilidades, asegurando que las particiones sean suficientemente diversas.

Biau y Devroye (2010) [25] aplicaron bagging al vecino més cercano (1-NN). El
estimador 1-NN estandar:

rn () = Y()(2),
donde Y(q(x) corresponde al X(qy(x) mds cercano a x, no es generalmente consis-
tente.

Mediante subbagging, se transforma en consistente con submuestras suficien-
temente pequenas. El predictor elemental 7,, es la regla 1-NN aplicada a una
submuestra aleatoria de tamano a,,. El estimador submuestreado es:

(@) = E[rq, (2)],

n
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donde E* es la esperanza respecto al remuestreo, dado D,,.
Biau y Devroye (2010) [25] demostraron que r; es universalmente consistente en

media cuadratica (sin condiciones sobre la distribucién de (X, Y")) siempre que a,, —

00 ¥ ap/n — 0. La demostracién se basa en que 7} es un estimador de promediado

local con pesos: W,,;(x) = Pr[X; es el vecino més cercano de = en una seleccién aleatoria de tamafio a].
Biau et al. (2010) [24] demuestran ademés que 7} alcanza la tasa éptima de

convergencia sobre clases Lipschitz, independientemente de si el remuestreo es con

o sin reemplazo.

8.2. Divisiones de Decision. El proceso de divisién por coordenadas es dificil

de comprender porque utiliza tanto X; como Y; para decidir las divisiones.
Basdndose en Biithlmann y Yu (2002) [32], Banerjee y McKeague (2007) [18]

establecen una ley limite para la ubicacion de divisiones en un modelo de regresion:

Y =m(X)+e,
donde X es real y € es ruido gaussiano independiente.

Supongamos que la distribucién de (X, Y) es conocida, y sea d* la divisién éptima
que maximiza el criterio teérico CART. Los estimadores de regresién en los hijos
son:

Bin=EY | X <d], B,=E}Y|X>d]

Cuando la distribucién es desconocida, se estiman empiricamente:

A A A , n 2
(Be,ns Brin,s dn) € argﬂmmdzl (Y = Belyx,<ay — Brlix,>a}) -

L5 Prs

Bajo condiciones de regularidad (densidad f de X y m continuamente diferen-
ciables), Banerjee y McKeague (2007) [18] demuestran:

Bé,n - ﬂz( C1
(5) n'3 | By — 57 Lile | arg max (aW (t) — bt?),
dy, — d* 1

donde W es un movimiento browniano estandar bilateral y a, b son constantes
positivas. Esta distribuciéon limite permite construir intervalos de confianza para
las divisiones CART.

Ishwaran (2013) [51] analiza la Preferencia por Cortes Extremos (End-Cut
Preference, ECP) del criterio CART:" las divisiones sobre variables no informativas
tienden a ubicarse cerca de los bordes de la celda. Esta es una propiedad deseable
porque:

= Con aleatorizacién, existe probabilidad positiva de que ninguna variable pre-
seleccionada sea informativa

= Si el corte se realiza en el centro, el tamafio muestral se reduce drasticamente
(factor de dos)

= Un corte cerca del borde maximiza el tamafnio muestral del nodo, permitiendo
recuperacién en niveles posteriores

Ishwaran (2013) [51] argumenta que ECP puede ser beneficiosa incluso para
variables informativas si la regiéon correspondiente contiene poca senal.

Scornet et al. (2015) [73] demuestran que los bosques aleatorios, asintéticamente,
realizan divisiones con alta probabilidad a lo largo de las variables informativas.
Denotando por j, 1(X),...,Jnk(X) las primeras k direcciones de corte para la
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celda de X, bajo condiciones de regularidad y una modificacién donde todas las
direcciones se preseleccionan:

Con probabilidad 1—-¢, para n grande y todo 1 < ¢ <k: j,q(X) e {L,...,|5]}.

Esto explica por qué los bosques se adaptan a esparsidad: seleccionan cortes
principalmente sobre variables informativas, proyectando efectivamente los datos
sobre el subespacio generado por esas variables.

Variantes del algoritmo:

» Extra-Trees [46]: Selecciona aleatoriamente puntos de corte y elige el que
maximiza CART. Rendimiento similar con mayor eficiencia computacional.

» PERT Arboles de ajuste perfecto con divisiones aleatorias. Aunque los ar-
boles individuales sobreajustan, el ensamble es consistente porque los clasi-
ficadores estan casi no correlacionados.

= Divisiones oblicuas [4, 77]: Divisiones a lo largo de combinaciones lineales
de caracteristicas. Menze et al. (2011) [65] notan que las divisiones ortogona-
les producen superficies de decisién en forma de cajas, Optimas para algunos
datos pero subOptimas para datos colineales.

Seleccion de variables ponderada: La seleccién uniforme inevitablemente
incluye variables irrelevantes. Varias modificaciones proponen ponderacion basada
en datos:

» Kyrillidis y Zouzias (2014) [57]: Seleccién no uniforme de caracteristicas en
arboles de clasificacion.

= Enriched Random Forests [15]: Muestreo ponderado favoreciendo carac-
teristicas informativas.

= Reinforcement Learning Trees [85]: En cada nodo, construyen un bosque
para determinar la variable con mayor mejora futura, no efecto marginal
inmediato.

Correccién de sesgos: Las divisiones CART estan sesgadas hacia covariables
con muchas divisiones posibles [27, 74] o valores faltantes [52]. Hothorn et al. (2006)
[48] proponen un procedimiento de dos pasos: (1) seleccionar la variable, (2) selec-
cionar la posicién del corte.

Regularizacion:

= Regularized Random Forest (RRF) [36]: Penaliza la seleccién de una
nueva caracteristica cuando su ganancia es similar a caracteristicas usadas
previamente.

= Guided RRF (GRRF) [37]: Usa puntuaciones de importancia de un bos-
que ordinario para guiar la seleccién en RRF.

= Penalizacién convexa tipo Garrote [64]: Selecciona grupos funcionales de
nodos para estimaciones mas parsimoniosas.

Konukoglu y Ganz (2014) [53] abordan el control de tasa de falsos positivos,
presentando una forma fundamentada de determinar umbrales para selecciéon de
caracteristicas relevantes sin carga computacional adicional.

8.3. Consistencia, Normalidad Asintética y Otros Resultados. Se ha de-
mostrado matematicamente muy poco sobre el procedimiento original de Breiman.
Un resultado fundamental [4] muestra que el error del bosque es pequefio cuando
el poder predictivo de cada arbol es bueno y la correlacién entre errores de arboles
es baja:
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Exy [Y = moon(X)]* < pEo xy [Y —ma(X;0)]°,
donde:
Eo,o/[p(©,0")9(0)g(0")]
Eolg(©))*
con © y © independientes e idénticamente distribuidos,

p(0,0") = Corrx y (Y —m,(X;0), Y —m,(X;0")),

p=

i

9(0) = \/Bxy [V — ma(X;0)1.

Friedman et al. (2009) [43] descomponen la varianza del bosque como producto
entre correlacién de arboles y varianza de un arbol:

Var[meo n(z)] = p(z) o(2),

donde p(z) = Corr[my,(x; 0), m,(x;0")] vy o(z) = Var[m,(z; ©)].
Scornet (2015a) [71] establece una conexién entre bosques finitos e infinitos:

0 < E[marn(X;01, ..., 0u) = m(X)]* = Elmoe n(X) —m(X)]* < % (Imll% + o*(1 + 4logn)) .

Esta desigualdad proporciona una soluciéon para elegir M: permite que el error
del bosque finito se aproxime arbitrariamente al del infinito.

Normalidad asintética: Reemplazando bootstrap por submuestreo y simplifi-
cando las divisiones, se han demostrado resultados de normalidad.

Wager (2014) [78] demuestra normalidad asintdtica bajo las suposiciones:

1. Los cortes se distribuyen sobre todas las p direcciones y no separan una
fraccién pequena de datos.

2. Se usan dos conjuntos de datos distintos: uno para construir el arbol y otro
para estimar valores en hojas.

Ademas, el jackknife infinitesimal estima consistentemente la varianza del bosque
[79].

Mentch y Hooker (2015) demuestran un resultado similar para bosques finitos,
basandose en que la prediccién no varia significativamente al modificar ligeramente
una etiqueta. Si a, = o(y/n) y lim, _, o n/M, = 0, entonces para z fijo:

mmM,n(x;@lﬁ—E[mm@)D L, N(0,1)

donde N(0,1) es la distribucién normal estandar y:

Clan = Cov(mn(Xl,Xg, ey X4, 0), mp(Xq, X5, . ,X;n;@’)) .

Tanto Mentch y Hooker (2015) [?] como Wager et al. (2014) [79] proporcionan
estimadores para la varianza (; 4, .

Scornet et al. (2015) [73] demostraron consistencia para modelos aditivos en la
version podada del bosque de Breiman. Desafortunadamente, la consistencia sin
poda depende de una conjetura sobre CART que es dificil de verificar.
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Resultado negativo [23]: Considere un ejemplo donde k es fijo, mtry = 1,
y cada arbol minimiza la verdadera probabilidad de error. Sea X uniforme en
[0,1]2U[1,2]2U[2,3]2 con Y funcién de X (L* = 0):
» [0,1] x [0,1]: franjas verticales alternando m(z) € {0,1}
= [2,3] x [2,3]: franjas horizontales alternando
= [1,2] x [1,2]: tablero de ajedrez 2 x 2
Ningtin arbol cortard correctamente el rectangulo central, independientemente
de las direcciones y profundidad. La probabilidad de error es al menos 1/6. Esto
ilustra que la consistencia de bosques construidos codiciosamente es delicada. Sin
embargo, con el algoritmo original de Breiman (exactamente un punto por celda),
se obtiene una regla consistente.
Notese que m no es Lipschitz, una suposicién de suavidad en la que se basan
muchos resultados.

9. IMPORTANCIA DE VARIABLES

9.1. Medidas de Importancia. Los bosques aleatorios ofrecen dos medidas
para clasificar la importancia de variables:

1. Mean Decrease Impurity (MDI): Basada en la disminucién total de im-
pureza al dividir por cada variable, promediada sobre todos los arboles. Para la
variable X (7):

M
A . 1 -k *
MDICXD) = 237 3" bt Lecgn (320 210

(=1t€Ty,j=j7 ,
donde:

= D, es la fracciéon de observaciones en el nodo ¢
= {T;} es la coleccion de arboles
= (jr,, 25 ,) es la divisién 6ptima en ¢

MDI calcula la disminucién ponderada de impureza para divisiones segin X (/)
y promedia sobre arboles. Para clasificacién, se reemplaza Lycg,n PO Lelass,n-

2. Mean Decrease Accuracy (MDA): Basada en permutacién de valores y
estimacién out-of-bag. Para X 9)| se permutan aleatoriamente sus valores en obser-
vaciones OOB y se mide el incremento en error de prediccion.

Sea Dy, el conjunto OOB del arbol ¢ y Dém el mismo conjunto con valores de

X ) permutados. Entonces:

M
) 1 .
(6)  MDA(XW) = 7 ; (Rn (mn(500), D},,,) = R (mn (- @g),ng)>,
donde para D = Dy, 0 D = ng:
1
(7) Ra(ma(00,0) = 5 3 (¥i—ma(X::00))"

i(X;,Y;)ED

La versién poblacional de MDA es:
MDA (X)) = E[(V = ma(X}:0))2] = E[(Y = ma(X;0))%],

donde X} = (XM x"@) X @) con X'Y) copia independiente de X ).
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Para clasificacién, MDA satisface (6) y (7) con Y; € {0, 1}, representando R, la
proporcién de puntos correctamente clasificados.

10. ALGUNAS EXTENSIONES

10.1. Bosques Ponderados. En el bosque de Breiman, la prediccion final es
el promedio simple de arboles. Una mejora natural es incorporar pesos a nivel
de 4rbol para enfatizar los més precisos [81]. Bernard et al. (2012) [21] proponen
guiar la construcciéon mediante remuestreo y aleatorizacion para que cada arbol
complemente los existentes. El Dynamic Random Forest (DRF) resultante
muestra mejora significativa en 20 conjuntos de datos reales.

10.2. Bosques en Linea. El bosque original es offline: recibe todos los datos
inicialmente. Los algoritmos online no requieren el conjunto completo de una vez,
apropiados para escenarios de streaming donde los datos se generan continuamente.

Extensiones online incluyen Saffari et al. (2009) [69], Denil et al. (2013) [38], y
Lakshminarayanan et al. (2014) [58]. Los Mondrian forests [58] se construyen
online con desempeno competitivo y mayor velocidad.

Una dificultad importante es decidir cudndo hay suficientes datos para dividir
una celda. Yi et al. (2012) [84] proponen Information Forests, que difieren la
clasificacién hasta que una medida de confianza sea suficientemente alta, dividiendo
datos para maximizar esta medida. Biau y Devroye (2013) [26] proporcionan teoria
relacionada con estos arboles codiciosos.

10.3. Bosques de Supervivencia. El andlisis de supervivencia estudia el tiem-
po hasta que ocurren eventos, frecuentemente con datos censurados a la derecha.
Enfoques paramétricos como hazards proporcionales fallan en modelar efectos no
lineales.

Ishwaran et al. (2008) [49] extendieron bosques al contexto de supervivencia
con Random Survival Forests (RSF), probando consistencia para variables
categéricas. Yang et al. (2010) [83] demostraron que incorporar funciones kernel en
RSF (algoritmo KIRSF) mejora resultados en muchas situaciones. Ishwaran et al.
(2011) [50] revisan el uso de profundidad minima para medir calidad predictiva de
variables.

10.4. Bosques de Ranking. Clémencon et al. (2013) [34] extendieron bosques
para problemas de ranking con Ranking Forests, basados en ranking trees [33].
El enfoque se basa en puntuacién no paramétrica y optimizaciéon de la curva ROC
mediante el criterio AUC.

10.5. Bosques de Clustering. Yan et al. (2013) [82] presentan Cluster Fo-
rests (CF) para clasificacién no supervisada. CF explora aleatoriamente un data
cloud de alta dimensién para obtener buenos agrupamientos locales, luego los agrega
mediante spectral clustering. La busqueda estd guiada por una medida de calidad
de clister, y CF mejora progresivamente cada agrupamiento de manera similar al
crecimiento de arboles en bosques.

10.6. Bosques de Cuantiles. Meinshausen (2006) [63] muestra que los bosques
proporcionan informacién sobre la distribucién condicional completa de la respues-
ta, permitiendo estimacién de cuantiles.
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11. EJEMPLO SIMULADO

11.1. Descripcién de los datos. Para ilustrar el funcionamiento de un modelo
de regresiéon basado en Random Forest, se gener6 un conjunto de datos simulado
con n = 1000 observaciones y cinco variables explicativas:
x1 ~U(0,10), m3 ~U(-3,3), x3~N(52%), z4~N(0,1%),25 ~U(-5,5).
La variable respuesta y se generd a partir de la siguiente relacién no lineal con
componente aleatoria:

y=5+2sin(r;) —0-523 +0-8v3 —0-324 +¢,
donde el término de error se distribuye como
e~ N(0,1).

Ademaés en el experimento se tomaron N = 1000 arboles y miry = 2 para
entrenamiento del modelo.

El objetivo del ejercicio es ajustar un modelo de Random Forest para estimar y
a partir de las covariables (1,2, 3, 24, 25) y evaluar su capacidad predictiva en
un conjunto de prueba.

11.2. Resultados. La tabla 2 presenta los resultados obtenidos tras entrenar el
modelo Random Forest en el conjunto de prueba, mostrando la comparacién entre
los valores observados y las predicciones generadas. Esta tabla permite evaluar de
manera clara la precision del modelo en las observaciones no utilizadas durante el
entrenamiento.

CUADRO 2. Comparacién entre valores reales y predichos del mo-
delo Random Forest para algunos puntos de prueba
Observacion Valor Real Prediccion RF

1 8.641 7.106
) 3.163 5.186
6 11.592 11.880
21 8.246 9.454
23 9.914 9.894
24 10.523 9.527
25 4.394 6.455
29 7.679 9.210
33 9.387 7.906
35 12.720 11.384
37 8.373 8.818
42 8.388 7.859
44 7.252 6.975
o4 8.303 7.882
99 8.606 9.723
62 7717 7.787
63 9.398 8.057
65 7.518 6.169
66 5.456 5.304
69 8.367 6.543
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En la tabla 3 el modelo Random Forest presenta un error cuadratico medio
(MSE) de 1-622 y un error cuadratico medio de la raiz (RMSE) de 1-274 en
el conjunto de prueba. Dado que la variable respuesta y toma valores entre —1-19
y 15 -39, el error promedio equivale aproximadamente al 7 - 7% del rango total de
y. Este resultado sugiere que el modelo logra un ajuste adecuado y una capacidad
predictiva razonablemente buena, manteniendo errores moderados en relacién con
la variabilidad de los datos observados.

CuUADRO 3. Desempeiio del modelo Random Forest en el conjunto

de prueba
Meétrica Simbolo Valor
Error Cuadratico Medio MSE 1.622

Raiz del Error Cuadratico Medio  RMSE 1.274

El modelo Random Forest obtuvo un Error Out-of-Bag (OOB) de
OOB=1-716

lo que representa una estimacién interna del error de prediccion promedio. Este
valor indica que, en promedio, el modelo comete un error cuadritico medio apro-
ximado de 1- 716 al predecir observaciones no utilizadas durante el entrenamiento
de cada arbol.

La Figura 1 presenta una comparacién detallada del desempeifio del modelo Ran-
dom Forest, mostrando tanto la relaciéon entre los valores observados y las prediccio-
nes generadas como la distribuciéon de los residuos asociados. Esta representacion
permite evaluar visualmente la precisién y el ajuste del modelo.

Ficgura 1. Comparacién de desempeno del modelo Random Fo-
rest: a la izquierda, (Real vs Predicho); a la derecha, (Residuos vs

s
Prediccion).
Real vs Predicho Residuos vs Prediccion
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La Tabla 4 muestra la importancia relativa de cada variable en el modelo Random
Forest. Se observa que 3, 2 y 1 son las variables mas influyentes tanto en términos
de %IncMSE como de IncNodePurity, lo que indica que ejercen un mayor impacto
sobre las predicciones del modelo. Por el contrario, z4 y, especialmente, x5 presentan
valores bajos, sugiriendo que aportan poca informacién para la prediccién de la
variable respuesta y. Esta informacién resulta util para identificar las covariables
que dominan la estructura del modelo.

CUADRO 4. Importancia de las variables en el modelo Random
Forest para regresion segun la métrica

Variable %IncMSE IncNodePurity
1 97.709 1231.129
) 104.299 1433.419
x3 164.855 2215.393
T4 7.381 403.692
Ts5 0.537 324.187

La Figura 2 ofrece una representacion visual refinada de la relevancia de las
variables en el modelo, mediante un grafico de barras comparativo entre métricas de
importancia. Esta visualizacién proporciona una comprensién mas intuitiva de las
variables que ejercen una mayor influencia en el desempefio predictivo del modelo.
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12. CONCLUSIONES

En este trabajo se ha demostrado que los Random Forests constituyen una de las
metodologias mas robustas y versatiles de aprendizaje estadistico moderno, gracias
a su capacidad para manejar datos de alta complejidad, identificar patrones rele-
vantes y realizar predicciones precisas y estables. Se destaca que la aleatorizacion en
la seleccion de datos y variables permite reducir la correlacién entre arboles, dismi-
nuyendo la varianza del modelo final y haciéndolo especialmente 1til en escenarios
con relaciones complejas y presencia de ruido.

Desde una perspectiva tedrica, la solidez del método fue establecida por Leo Brei-
man, siendo posteriormente reforzada por diversos autores quienes han garantizado
la consistencia y adaptabilidad de los bosques ante distintos tipos de datos. En el
ambito aplicado, los Random Forests resultan especialmente apropiados para abor-
dar problemas sociales, econémicos y ambientales de Honduras, como la mediciéon
de pobreza, la planificacién territorial y el andlisis educativo.

Metodologicamente, se ha subrayado la importancia del algoritmo y sus criterios
de construccién, asi como los métodos de evaluacién de la importancia de las va-
riables, incluyendo las medidas Mean Decrease Impurity (MDI) y Mean Decrease
Accuracy (MDA). Asimismo, la flexibilidad para realizar tareas de regresion y cla-
sificacién, junto con la posibilidad de ajustar parametros utilizando la estimacién
out-of-bag, representa una fortaleza adicional.

En resumen, la contribucién principal de este trabajo es resaltar la integracién
de robustez tedrica, eficiencia practica y versatilidad aplicada por parte de los Ran-
dom Forests, consoliddndolos como una herramienta primordial para el analisis, la
prediccién y la toma de decisiones informadas en contextos multidisciplinarios. Ade-
mas, su implementacién y estudio favorecerian el fortalecimiento de competencias
nacionales en ciencia de datos e inteligencia artificial, aportando significativamente
al desarrollo cientifico de la regién.
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EVALUACION DEL RIESGO CLIMATICO AGRICOLA EN
HONDURAS MEDIANTE UN MODELO ACTUARIAL
ECONOMETRICO BASADO EN FUNCIONES DE VALORES
EXTREMOS

AXEL JOSAPHET CRUZ LOPEZ

RESUMEN. La produccién agricola en Honduras enfrenta una alta vulnera-
bilidad a eventos climéaticos extremos, exacerbados por el cambio climatico.
Esta investigacién desarrolla y evalia un modelo actuarial econométrico hi-
brido para la cuantificacién del riesgo climatico agricola en el pais. El modelo
propuesto fusiona tres enfoques: el anéalisis econométrico de series temporales
(ARIMA-X y VAR) para capturar la dindmica y co-dependencia entre variables
macro-climéticas (precipitacién, temperatura) y los rendimientos de produc-
cién;la Teoria de Valores Extremos (EVT), utilizando distribuciones GEV y
GPD, para modelar especificamente la frecuencia y severidad de los eventos
catastroficos (sequias, inundaciones) que residen en las colas de la distribucién;
y la ciencia actuarial para el cilculo de primas de riesgo. Mediante simulacio-
nes de Monte Carlo, se integra la dindmica base con los shocks extremos para
generar una distribucién agregada de pérdidas agricolas. Esta distribucién per-
mite el calculo de la Pérdida Esperada (EL) y el Tail Value at Risk (T'VaR),
fundamentando una metodologia robusta y cuantitativa para la tarificaciéon de
seguros agricolas adaptada a las condiciones de riesgo extremo en Honduras.

Palaras claves : Riesgo Climético, Teoria de Valores Extremos, Modelos Ac-
tuariales, Series Temporales, Honduras.

ABSTRACT. Agricultural production in Honduras faces high vulnerability to ex-
treme weather events, exacerbated by climate change. This research develops
and evaluates a hybrid econometric-actuarial model for quantifying agricultu-
ral climate risk in the country. The proposed model combines three approaches:
econometric time series analysis (ARIMA-X and VAR) to capture the dyna-
mics and co-dependence between macro-climatic variables (precipitation, tem-
perature) and production yields; Extreme Value Theory (EVT), using GEV
and GPD distributions, to specifically model the frequency and severity of ca-
tastrophic events (droughts, floods) that lie in the tails of the distribution;and
actuarial science for the calculation of risk premiums. Through Monte Carlo
simulations, the base dynamics are integrated with extreme shocks to generate
an aggregated distribution of agricultural losses. This distribution allows for
the calculation of Expected Loss (EL) and Tail Value at Risk (T'VaR), provi-
ding a robust and quantitative methodology for pricing agricultural insurance
adapted to the conditions of extreme risk in Honduras.

Key words : Climate Risk, Extreme Value Theory, Actuarial Models, Time
Series, Honduras

Fecha: Noviembre 2025.
Palabras y frases clave. Riesgo climatico, Econométria.
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1. INTRODUCCION

La economia de Honduras y la seguridad alimentaria de su poblacién dependen
intrinsecamente del desempenio del sector agricola. Este sector, sin embargo, es uno
de los mas vulnerables a la variabilidad climéatica y, de forma creciente, a la inten-
sificacién de eventos extremos como sequias prolongadas, huracanes e inundaciones
torrenciales, fenémenos exacerbados por el cambio climatico. La evaluacién precisa
de este riesgo es fundamental, pero presenta un desafio metodologico significativo.
Los modelos econométricos tradicionales, como los de series temporales ARIMA o
VAR, son eficientes para capturar la dindmica promedio y las interacciones entre va-
riables como la precipitacién, la temperatura y la produccién (Zulfigar et al., 2024).
No obstante, estos modelos fallan sistematicamente al subestimar la probabilidad
y el impacto de los eventos catastréficos, ya que sus supuestos a menudo de nor-
malidad no pueden modelar adecuadamente las colas pesadas de las distribuciones
de pérdidas.

Por otro lado, la Teorfa de Valores Extremos (EVT) ofrece un marco estadistico
robusto, fundamentado matematicamente, disenado especificamente para modelar
el comportamiento de estos eventos raros y severos (Coles, 2001). Modelos como
la Distribucién Generalizada de Valores Extremos (GEV) o la Distribucién Gene-
ralizada de Pareto (GPD) permiten una caracterizacién precisa de la cola de la
distribucién, es decir, del riesgo de pérdidas extremas en los cultivos (Van Tassell,
2024). Sin embargo, la EVT por sf sola no captura la dindmica temporal subyacente
ni las co-dependencias econométricas del sistema climatico-agricola. La literatura
reciente busca cerrar esta brecha, reconociendo que ni los modelos econométricos
por si solos, ni los modelos de EVT de forma aislada, son suficientes para una
evaluacién integral del riesgo.

Esta investigacion propone y desarrolla un modelo actuarial econométrico hibrido
para la evaluacién del riesgo climatico agricola en Honduras. El modelo fusiona
estas disciplinas para superar sus limitaciones individuales.

El objetivo general de este trabajo es cuantificar el riesgo de pérdida agricola debido
a factores climéticos extremos en Honduras, desarrollando una metodologia para el
célculo de primas de seguro actuarialmente justas. Para alcanzar esto, se plantean
los siguientes objetivos especificos:

= Modelar la dindmica y co-dependencia de linea base entre las series tempo-
rales de produccion agricola, precipitacion y temperatura mediante modelos
econométricos ARIMA-X y/o VAR.

= Ajustar modelos de Teoria de Valores Extremos GEV y GPD a los residuos
extremos de los modelos climéticos o directamente a los eventos extremos
ejemplo. sequias para caracterizar la frecuencia y severidad del riesgo catas-
tréfico.

= Integrar ambos componentes (econométrico y EVT) a través de simulaciones
de Monte Carlo para generar una distribucién de pérdida agregada anual
para el sector agricola.

= Calcular métricas de riesgo actuarial, como la Pérdida Esperada (EL) y el
Tail Value at Risk (TVaR), para establecer una base técnica para la prima
pura de riesgo y los requerimientos de capital.
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La importancia de este articulo radica en su aplicacién practica. Al fusionar estas
técnicas, el modelo no solo describe el riesgo, sino que lo cuantifica en términos mo-
netarios y probabilisticos. Esto proporciona una herramienta cuantitativa esencial
para el disefio de seguros agricolas paramétricos o de indice, la estructuracién de
fondos de contingencia y la toma de decisiones de politica publica para la adapta-
cién al cambio climéatico. Siguiendo enfoques similares aplicados en otros contextos
(Ly et al., 2024), este trabajo ofrece una metodologia robusta para fortalecer la re-
siliencia financiera de los agricultores hondurenos ante un futuro climético incierto
y extremo.

2. JUTIFICACION

La presente tesis, centrada en la Evaluacién del Riesgo Climatico Agricola en Hon-
duras mediante un Modelo Actuarial Econométrico, se justifica por la urgente nece-
sidad de dotar al pais de herramientas cuantitativas y técnicamente avanzadas para
gestionar las crecientes amenazas que el cambio climatico impone a su estabilidad
econdmica, sostenibilidad productiva y seguridad alimentaria.

1. Relevancia y Justificacién Nacional (Resolucién de Problemas de Pais):
La justificacién de este trabajo radica en la respuesta directa y cuantificable
a problemas nacionales criticos, utilizando datos oficiales y especializados
= Riesgo Catastrofico y Sostenibilidad Financiera: La agricultura, pilar
econémico hondureno, estd expuesta a la volatilidad climéatica. El uso de
la Teorfa de Valores Extremos (EVT) (Coles, 2001) sobre datos de CO-
PECO e IHCIT permite modelar la probabilidad de eventos catastréficos
(sequias e inundaciones) que impactan la produccién. Los modelos tradi-
cionales subestiman este riesgo, un fallo que ha costado al pais pérdidas
significativas.
= Fundamento para el Seguro Agricola Nacional: La adopcién de seguros
agricolas es minima debido a la falta de metodologias transparentes pa-
ra la tarificacién. Esta investigacion utiliza el PIB Agricola y datos de
precios del BCH y SEFIN para monetizar el impacto de las pérdidas. Al
fusionar la EVT con el enfoque actuarial (Klugman et al., 2019; Ly et al.,
2024), el estudio establece el calculo de primas puras basadas en la Pér-
dida Esperada y el TVaR, proporcionando la base técnica indispensable
para que SENASA y otras instituciones financieras puedan desarrollar e
implementar productos de transferencia de riesgo sostenibles.
= Integracion de Datos y Politica Publica: El trabajo exige la integracion
rigurosa de estadisticas agrocliméticas SENASA, IHCIT, meteoroldgi-
cas (COPECO) y econémicas BCH, SEFIN en modelos ARIMA-X/VAR
(Enders, 2014). Esta integracién demuestra la viabilidad de utilizar la
informacién nacional dispersa para la toma de decisiones basada en evi-
dencia, transitando de una gestién de crisis reactiva a una gestiéon de
riesgo predictiva y cuantificada.
2. Alineacién con las Lineas de Investigacion Prioritarias de la UNAH
Este trabajo se alinea de manera fundamental y directa con las prioridades de
investigacién de la Universidad Nacional Auténoma de Honduras (UNAH):
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Linea de Investigacién Priori-
taria UNAH

Justificacién de la Alineacién

Cambio Climéatico, Ambiente
y Gestién de Riesgos

Se centra en la evaluaciéon y gestiéon cuantitativa del
riesgo climdtico, utilizando datos meteorologicos THCIT,
COPECO para calibrar modelos de Teoria de Valores
Extremos (EVT) que miden la severidad del impacto
ambiental sobre el sector productivo nacional.

Desarrollo Econémico, Pobre-
za, Desigualdad y Desarrollo
Humano

El estudio aborda la fragilidad econémica del sector agri-
cola. Al proveer la metodologia para el seguro, contri-
buye a la resiliencia financiera y la estabilidad de ingre-
sos de los agricultores, actuando como una herramienta
contra la pobreza rural y para la planificacion econémica
BCH, SEFIN.

Ciencia y Tecnologia

La tesis es una aplicacion de modelacién avanzada, fu-
sionando disciplinas mateméticas (EVT), estadisticas
(Simulacién Monte Carlo) y econométricas (ARIMA-X,
VAR) para resolver un problema nacional, contribuyen-
do a la innovacién metodoldgica y la generacién de co-
nocimiento cientifico-cuantitativo.

3. Linea de Investigacién de la Maestria
El trabajo sigue y fusiona de forma sinérgica las siguientes lineas de investi-
gacion de la Maestria en Estadistica:
a) Econometria y actuaria : Esta es la linea central. El estudio es la aplica-
cién de modelos estadisticos y matematicos para la evaluacién de riesgos
y la tarificacién de seguros(actuaria) en un contexto econémico PIB,

precios, produccién.

b) Teoria de los valores extremos : El modelo depende fundamentalmente
de la EVT para calcular la probabilidad de eventos o valores més extre-
mos que los observados previamente sequias, inundaciones, lo cual es su
principal aporte metodolégico.

¢) Series de tiempo : El andlisis de las series histéricas de produccién y va-
riables climéticas (Enders, 2014) es esencial para la etapa de diagndstico
y modelado de la dinAmica temporal base del fenémeno.
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3. ANTECEDENTES

1. El Pilar de la Econometria de Series Temporales y el Clima
El andlisis de series temporales se formalizé en la década de 1970 con la
metodologia Box-Jenkins. Esta proporcioné un marco sistematico para la
identificacién, estimacién y verificacién de modelos univariados ARIMA (Au-
torregresivo Integrado de Media Mévil), fundamentales para la modelizacién
de variables que exhiben dependencia temporal, estacionalidad o tendencia
(Enders, 2014).

= Primeros Aportes (1980 - 1990): Inicialmente, los modelos de series tem-
porales se aplicaron al andlisis macroeconémico. Sin embargo, su exten-
sién a variables climéaticas y agricolas fue evidente al buscar la relacién
entre variables econémicas y factores exdgenos. La incorporacién de la
variable climatica como un factor exégeno dio origen al modelo ARIMA
con variables exdgenas (ARIMA-X), permitiendo capturar como la pre-
cipitacion o la temperatura afectan la produccién (Zulfigar et al., 2024).

= Desarrollo Multivariado (1990 - 2000): La comprensién de que las varia-
bles econémicas y climaticas se influyen mutuamente llevé al desarro-
llo de modelos multivariados, principalmente el Vector Autorregresivo
(VAR), popularizado por Christopher A. Sims. Estos modelos son esen-
ciales para analizar la causalidad y la dindmica de corto y largo plazo
entre variables interconectadas ejemplo, la precipitacion en la producciéon
y el PIB agricola.

= Posteriormente, los trabajos de Robert F. Engle y Clive W. J. Granger
sobre la Cointegracién permitieron modelar la relaciéon de equilibrio a
largo plazo entre series, incluso si estas son no estacionarias. Este con-
cepto es vital en la agricultura, ya que la produccion y los precios, aunque
volatiles, pueden mantener una relacién estable a largo plazo.

= Aportes Recientes: Los trabajos més recientes buscan refinar la relacion
entre el clima y los resultados econdémicos. Estudios como el de Sarker
y Sarker (2024) usan modelos econométricos para vincular la volatilidad
del clima con las dinamicas de las exportaciones agricolas, estableciendo
la metodologia para monetizar el impacto de las variables climéticas.

2. El Pilar de la Teoria de Valores Extremos (EVT)
La Teoria de Valores Extremos (EVT) es la rama de la estadistica que se
enfoca en el comportamiento probabilistico de los valores atipicos, es decir,
de los méximos o minimos de una secuencia de datos. Sus fundamentos se
remontan a principios del siglo XX, pero su formalizaciéon clave ocurrié en
la segunda mitad.

= Ronald Fisher y Leonard Tippett (1928): Publicaron el teorema que
establece que la distribucién de los méximos normalizados de una gran
muestra debe converger a una de las tres formas asintéticas (Gumbel,
Fréchet, Weibull).

» Boris V. Gnedenko (1943): Demostr6 formalmente el Teorema de Fisher-
Tippett-Gnedenko, el pilar de la distribucién GEV (Generalized Extreme
Value), utilizada para modelar los méximos por bloques (Coles, 2001).

= Laurens de Haan y A. L. M. Rootzén (Década de 1970): Sus trabajos
formalizaron el enfoque de Picos Sobre el Umbral (POT), demostrando
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que la distribucién de los excesos por encima de un umbral alto converge
a la Distribucién Generalizada de Pareto (GPD). Este enfoque es prefe-
rido en la practica actuarial y financiera por su uso eficiente de los datos
extremos.

= Aportes Recientes a la Teoria: El desarrollo reciente de la EVT se centra
en hacer que los modelos sean no estacionarios (Coles, 2001). Dado que
el riesgo climatico estd cambiando, el modelado moderno requiere que
los pardmetros de las distribuciones GEV/GPD como la localizacién o
la escala sean funciones del tiempo o de covariables como tendencias de
temperatura. Esto es crucial para proyectar el riesgo en un escenario de
cambio climético y no solo describirlo histéricamente.

3. El Pilar Actuarial y la Fusién con el Riesgo Extremo La ciencia actuarial,
histéricamente centrada en seguros de vida y pensiones, se expandié a la
modelacién de pérdidas no vida Propiedad y Dafios a partir de la década de
1980.

= Desarrolladores Clave y Modelos de Pérdida: Los trabajos de Stuart A.
Klugman, Harry H. Panjer y Gordon E. Willmot formalizaron los mo-
delos de pérdida agregada, que combinan distribuciones de frecuencia
(cuéntos eventos ocurren) y severidad (cudl es la magnitud de cada pér-
dida) (Klugman et al., 2019). Esta es la base para las Simulaciones de
Monte Carlo utilizadas para generar la distribucién de pérdida total.

» Fusion EVT-Actuarial (Siglo XXI): La crisis financiera de 2008 y la
creciente amenaza del riesgo catastréfico natural impulsaron la adopcién
de la EVT en la tarificacién de seguros y la gestién de capital (Solvencia
IT). La EVT se convirtié en la herramienta estdndar para modelar la cola
de la distribucién de pérdidas (severidad) antes de ser agregada mediante
Monte Carlo. Esto permite calcular métricas actuariales robustas como
el Value at Risk (VaR) y el Tail Value at Risk (T'VaR), esenciales para
la fijacién de la prima pura y el recargo por riesgo (Dickson, 2016; Osepa
& Mailafia, 2024).

= Integracién Actuarial-Econométrica: El aporte mas reciente y relevan-
te para esta tesis es la integracion de los tres pilares. Ly, Riam, y Hi-
zam (2024) ejemplifican este enfoque al utilizar modelos de cointegracién
(econometria) para vincular los rendimientos de cultivos con factores cli-
maticos extremos (EVT), aplicando el resultado para disefiar un sistema
de tarificacién de primas.

= Modelado del Rendimiento como Riesgo: El trabajo de Van Tassell (2024)
valida el uso de la EVT para modelar la cola izquierda de la distribucion
de rendimientos agricolas es decir, las grandes pérdidas o fallas de cose-
cha, proveyendo el insumo directo para el calculo actuarial del riesgo de
seguro.

4. Integraciéon Actuarial-Econométrica y Riesgo Agricola

= El aporte mas reciente es la integracién de los tres pilares en aplicaciones

sectoriales. El trabajo de Van Tassell (2024) valida la aplicacién de la
EVT para modelar la cola izquierda de las distribuciones de rendimientos
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de cultivos las grandes pérdida, proporcionando el insumo directo para
el calculo de pérdidas.

= Finalmente, la investigacién de Ly, Riam, y Hizam (2024) ejemplifica la
integracién final: utilizan la cointegracién econometria y la cuantificacion
de extremos (EVT) para alimentar directamente un sistema actuarial de
tarificacion de primas, que es el objetivo dltimo de esta tesis.

CUERPO DEL ARTICULO
MARCO TEORICO

Modelado de serie temporales en agricultura. El modelado de serie tempo-
rales agricolas consiste en analizar la evoluciéon temporal de variable agroclimatica
como rendimiento,produccion precipitacién o temperatura con el fin de capturar
sus tendencia, estacionalidades y perturbaciones aleatorias.Este enfoque permite
identificar relaciones dinamicas entre los factores climaticos y los resultados pro-
ductivos, esenciales para prondsticos y evaluacién de riesgo en agricultura.[3]
Propiedades fundamentales de las series temporales

Definicién Estacionariedad: Una serie Y; es estacionaria si su media y varain-
za son constantes a lo largo del tiempo y la covarianza depende solo de la distancia
temporal (h), no del tiempo absoluto.

(3.1) ElYi]=u, Var(¥y) =0?  Cou(Yy,Yi-n) =7(h)

La estacionariedad garantiza que los pardmetros estimados sean estables y que el
proceso sea predecible.[8]

Definicién Autocorrelacién y dependencia temporal: Las observaciones
sucesivas de Y; puede estar correlacionadas, capturando persistencia climatica o
agricola como por ejemplo el rendimiento que afecta las condiciones previas de
humedad o temperatura.[8]

La funcién de autocorrelacién (FAC) se define como :

v(h)
(3.2) p(h) ~0)
Definicién Estacionalidad : En agricultura, es comiin observar patrones estacio-
nales asociados a ciclos de cosecha o precipitaciones. Se puede eliminar mediante
diferenciacion estacional :

(3.3) Y, =Y, -V,

donde s representa la periodicidad como por ejemplo puede ser perido de 12 meses
0 4 trimestre.[3]

Modelo ARIMA (p,d,q)
El modelo ARIMA (AutoRegressive Integrated Moving Average) representa la re-
lacion entre el valor actual de una serie y sus valores pasados,junto con errores
pasados.

(3.4) Y=Y, 1+ Y, o+ ... + dpYip + 01601 + . +04ct—q+er
donde :

= p: Es el orden autorregresivo (AR).
= d: Es el ntmero de diferencias aplicadas para lograr estacionariedad.
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= ¢ : Es el orden del promedio mévil (MA).
= ¢;: Es el error o ruido blanco con media vero y varainza constante.

La version integrada se aplica cuando la serie presenta tendencia, transformando
Y; en diferencia de orden d

(3-5) V'Y, =(1-B)%,
8], [3]

Modelo ARIMA-X(ARIMAX)
En contextos agricolas, las fluctuaciones en el rendimiento no dependen tnicamente
de la dindmica temporal interna, sino tambien de factores exégenos climéaticos.
El modelo ARIMA-X o ARIMAX amplia la formulacién clasica incluyendo varia-
bles externas X;, tales como precipitacién acumulada, temperatura media o indices
climéticos :

P q T
(3.6) Yi=a+ Z OiYei + Z Ojee—j + Z B X ik + e

i=1 j=1 k=1
donde

= Y, : Rendimiento o produccién agricola.
= X, : Variale exégena climatica.
= ;. sensibilidad del rendimiento ante el factor climéatico.

Este modelo permite evaluar cémo los choques climéaticos afectan la produccién
y cuantifican su elasticidad frente a la precipitaciéon o temperatura.[3],[8]

Andlisis de cointegracién agricola
Cuando las series no son estacionarias en nivel, pero una combinacion lineal de ella
si lo es,se dice que estan cointegradas.Esto implica una relacién de equilibrio de
largo plazo entre la variables agroclimaticas.
El modelo de cointegracién es :

(37) }/f =+ ﬂXt + &¢

donde ¢; es estacionario, aunque Y; y X; no lo sean individualmente.

Este analisis de cointegracién se usa para modelar relaciones entre rendimiento
agricola y eventos climaticos extremos o indices globales como ENSO, temperatura
ocednica etc, evitando regresiones espurias.|[1]

Teoria de valores Extremos (EVT) en riesgo climaticos. Lateoria de valo-
res extremos EVT, por sus siglas en ingles: Extreme Value Theory proporciona el
marco estadistico para modelar eventos raros o extremos, es decir, aquellos que se
sitian en las colas de una distribucién

En el contexto climético y agricola, la EVT permite estimar la probabilidad y
magnitud de fenémenos pocos frecuentes pero de gran impacto, como sequias pro-
longadas, lluvias torreciales o temperaturas extremas, que afectan el rendimiento y
la estabilidad econémica del sector agricola.

Segin Cole(2001)[7], la EVT se fundamente en el estudio del comportamien-
to asintético de los maximos (o minimos) de una secuencia de variales aleatorias,
extendiendo los principios de la probabbilidad clasica hacia las colas de la distribu-
cién.De esta manera, en lugar de analizar el comportamiento promedio, la EVT se
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centra en los riesgos extremos, es decir, en los eventos que se sobrepasan un cierto
umbral critico.[7]

Modelo de méaximos por bloques(Block Maxima Approach)
El enfoque de maximos por bloques consiste en dividir una serie temporal en blo-
ques de igual longitud por ejemplo anos o estaciones y luego toma el valor maximo
(o minimo) de cada bloque.
Si los datos son independintes e idénticamente distribuidos, el teorema de Fisher
Tippett Gnedenko establece que

Teorema de Fisher Tippett Gnedenko Para un tamano de bloques sufi-
cientemente grande, la distribuciéon de los maximos se aproximan a una de las tres
formas conocidas como distribucién de valores extremos generalizada (GEV)

T —p
g

(3.8) G(z) = exp{—[1 + &(

donde
= 4 : Es el parametro de localizacién.
= 0 > 0 : Es el parametro de escala.
= ¢ Es el pardmetro de forma que determina el tipo de cola.

NTY  donde 1+§% >0

Consideremos la interpretacion del parametro de forma (&):

= £ = 0: Es de tipo Gumbel, cola exponencial(eventos moderadamente extre-
mos).

= £ > 0: Es de tipo Fréchet, cola pesada(eventos muy extremos , como lluvias
torrenciales).

= £ < 0 : Es de tipo Weibull, cola finita(limite superior natural, util para
temperatura maxima.

[7]

Modelo de excedencias sobre Umbral(Peaks Over Threshold, POT)
El segundo enfoque, propuesto por Pickands(1975) y formalizado en cole(2001)[7],
consiste en modelar directamente las excedencias sore un umbral alto u.

SiY = X —u representa el exceso sobre u, entonces para valores sufucientente gran-
des de u, la distribucién condicional de Y sigue aproximadamente una distribuciéon
Pareto generalizada (GPD) :

—1
(3.9) H(y):1—(1+§%)T, y >0, 1+§%>0
donde

= 3 > 0 : Pardmetro de escala.
= ¢ : pardmetros de forma, compartido con la GEV.

Este modelo es especialmente til para estimar probabilidades de eventos extre-
mos raros, incluso cuando no existen observaciones directas de tales eventos en el
historial. [7], [2]

Tenemos algunas propiedades fundamentales de la EVT :

1. Invarianza a tranformaciones lineales : Si X sigue un GEV o GPD , cualquier
tranformacion lineal a+bX con b > o también pertenece a la mima familia.
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2. Estabilidad de la forma : El pardmetro & define la clase de cola(Gumbel, Fré-
cheto Weibull) y se mantiene constante bajo escalas temporales razonables.

3. Interpretacion de riesgo : La EVT permite calcular métricas de riesgo como
el nivel de retorno y el periodo de retorno :

o

E[(—ln(l —1T))"¢ —1]

donde z71 es el evento esperado una vez cada T periodos por ejemplo una

sequia centeraia.

(3.10) rr=p+

(7]

La EVT ha sido ampliamente utilizada para estimar la probabilidad de lluvias ex-
tremas que superan la capacidad de drenaje agricola, tambien determian el riesgo
de perdida por seguias prolongadas y evalua el impacto potencial de eventos EN-
SO(EI Niflo/La Nifia) sobre el rendimiento agricola.

Segun Van Tassell(2024), al combinar la EVT con informacién agroclimética, se
obtiene una estimacién més precisa del riesgo de pérdida extrema, lo cual es funda-
mental para disefiar seguros indexados climéticos y determinar primas actuariales
justas. [2]

Modelos actuariales y de riesgo. Los modelos actuariales de riesgo constituyen
la base matematica de la valoracién de perdida, estimacion de reserva y calculo de
primas en seguros.

En el contexto agricola , estos modelos permiten cuantificar la frecuencia e inten-
sidad de eventos climdticos adversos(como sequias o lluvias excesivas) y estimar la
pérdida esperada total de los productores.

De acuerdo con Klugman, Panjer y Willmot(2019)[11], el riesgo se representa
como una suma aleatoria de pérdidas individuales, donde cada evento climatico ge-
nera una pérdida X;, y el nimero total de eventos N sigue una distribucién discreta
como por ejemplo Poisson o una Binomial.Asi, el modelo de pérdida agregada se
define como :

(3.11) S=>X;

donde
= S : Es la pérdida total en un periodo, por ejemplo una temporada agricola.
= N : Es el nimero de evento extremos.

= X, : Es la pérdida individual causada por el evento i.
(9]

Componentes del modelo de riesgo

1. Frecuencia de evento (N) :El numero de evento extremos se modela mediante
una distribucién discreta de conteo. Las mas utilizadas son :
= Distribucién de Poisson

(3.12) PN =n)= 2

n=0,1,2.
n!
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donde A = E[N] es la frecuencia esperada de eventos como por ejemplos
lluvias intensas por anos.
= Distribuciéon Binomial : Si el niimero de observaciones es finito

(3.13) P(N =n)= (2)p"(1—p)" "

con m el nimero méximo de ensayos(afos o parcelas) y p la probabilidad
de un evento extremo.
2. Severidad de pérdida (X;) :Cada pérdida individual X; se modela con una
distribucién continua no negativa. Las mas comunes son

= Distribucién Lognormal : Es 1til para pérdidas moderadas y variables
climéticas multiplicativas.

= Distribucion Gamma o Weibull :aplicables a danos acumulativos.

= Distribucién Pareto o Generalized Pareto (GPD) : ideal para pérdidas
extremas, en conexién con la EVT.

(3.14) Fai6,8) = %(1 +EHTT a>0

donde 8 es el parametro de escala y £ es el pardmetro de forma(cola
pesada si £ > 0)

(9], [7]

Momentos y métricas de riesgo
El riesgo total S combina la aleatoriedad de N(frecuencia) y X;(severidad).Bajo
independencia entre ambos, los momentos del total de pérdida son :

(3.15) E[S] = E[N]E[X]

(3.16) Var(s) = E[N|Var(X) + Var(N)(E[X])?

Estas expresiones permiten estimar el valor esperado de la perdida total y su va-
riabilidad, base para el cdlculo de reservas y primas.[9]

Distribucién de pérdida agregadas
Cuando no existe una forma analitica simple para S, se utiliza métodos de simula-
cién Monte Carlos o aproximaciones numéricas (Panjer recursion) para obtener la
distribucién de perdida totales. [13]

Simulacién Monte Carlos:
= Genera N ~ Poisson(\).
= Simular N pérdidas X; segtun su distribucion.
» Calcular S =5 X,.
= Repetir hasta obtener la distribuciéon empirica de S.

[9]

Probabilidad de ruina y control de solvencia
Segin Dickson(2016)[10], el analisis actuarial no solo evalia pérdidas esperadas,
sino tambien la probabilidad de ruina del asegurador, es decir, la probabilidad de
que las pérdidas acumuladas excedan el capital inicial u

(3.17) Y(u) = P(ruina|capital inicial = u)
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En el modelo cldsico de riesgo de Cramér-Lundberg[12], con primas ¢ cobradas
a tasa constante, la reserva del asegurado al tiempo t se expresa como :

(3.18) U(t) =u+ct —S(t)

donde u es el capital inicial, ¢ el ingreso por primas y S(t) es la pérdida acumulada
hasta t.
La condicién de equilibrio para evitar la ruina es

(3.19) ¢ > B[S|/t
[10]

Integracién metodolégica.

1. Los residuos de ARIMA-X representan las desviaciones no explicadas por
los factores normales, es decir, los eventos anémalos o extremos.

2. Dichos residuos se analizan mediante EVT, obteniendo parametros de cola
(&, 8) que describe la severidad de las pérdidas.

3. Los pardmetros de frecuencias (\) y severidad (GPD) se integran en el mo-
delo actuarial de riesgo agregado, permitiedo cuantificar la pérdida total
esperada y la prima justa que compensa al asegurador.

METODOLOGIA

Datos y procesamiento. Esta subseccion repasa la fuente de datos y las series
utilizadas ,PIB, precios de BCH,SEFIN; precipitaciéon, temperatura y produccién
de SENASA THCIT,COPECO, la necesidad de homogeneidad de series intertem-
porales como menciona Enders, 2014,[8]) pero aqui usamos las otras series, y el
procesamiento de la serie cronologica de eventos meteoroldgicos extremos para cap-
turar las variables climéaticas de interés.

De Sarker et al. (2024)[4] el articulo discute cémo los eventos meteoroldgicos ex-
tremos influyen en la dinamica de las exportaciones agricolas y en las expectativas
econémicas intertemporales.

Definicién de eventos meteorolégicos extremos : las sequias y las inundacio-
nes son los eventos meteorolégicos extremos, ya que son grandes desviaciones de la
norma e influyen en la produccion agricola de manera positiva o negativa, influyen-
do asi en las exportaciones agricolas. Estos eventos son choques que influyen en la
economia para estar desbalanceada.

Propiedades de los eventos meteorolégicos extremos: los eventos meteoro-
l6gicos extremos estan altamente sesgados con colas pesadas que ilustran el gran
impacto son altamente arriesgados ejemplo cosechas pobres. Estos eventos meteo-
rolégicos extremos son no estacionarios, ya que estan influenciados por el cambio
climéatico, de ahi la necesidad de ajustar las series a la homogeneidad de series in-
tertemporales.

Honduras necesita examinar los datos de temperatura de precipitaciones de SENA-
SA THCIT,COPECO para homogeneizar tendencias y aislar mejor los extremos,
ya que las tendencias pueden ser no climaticas ,variaciones estacionales, errores de
medicién, etc. Esto es ttil para analizar los datos econémicos, utilizando los datos
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del PIB de BCH,SEFIN.

el articulo describe el uso de andlisis de regresién para determinar la relacion entre
eventos climaticos extremos y exportaciones:

(320) ln(EXt) =a+ ﬁlln(EXt,]_) + BQEXTt + €

donde FX; es el volumen de exportaciones agricola en el periodo t, EXT; es un
indicador de evento extremo por ejemplo, desviaciéon de precipitacion, y €; es el
error.Esta ecuacion ayuda a procesar series temporales para detectar impactos en
produccién agricola hondurena.

La Academia Americana de Actuarios (2024): El Indice de Riesgo Climatico de
los Actuarios (ACRI)[6] evalia riesgos climdticos globales especificos, incluyendo la
agricultura.

Definicién ACRI : El ACRI es un indice compuesto que evaltia la magnitud del
riesgo climético por ejemplo, sequias, inundaciones en varios sectores, incluyendo
la agricultura, utilizando datos histéricos y proyecciones.

Es aditivo y escalable, lo que permite homogeneizar series temporales de multi-
ples fuentes por ejemplo, precipitacién de COPECO con precios de SEFIN. Incluye
componentes sobre la frecuencia e intensidad de los extremos.

Para Honduras, ACRI puede ser utilizado para corroborar la homogeneidad de la
serie temporal, asegurando que los datos de produccion agricola reflejen el verda-
dero riesgo climatico, es decir, cambios en la precipitacién que impulsan la cosecha.

El ACRI se calcula como :
(3.21) ACRI = w.FREQ + wo.INT + w3.EXP

donde FREQ es la frecuencia de eventos extremos,INT su intensidad,EXP la expo-
sicién econémica por ejemplo, basada en PIB agricola ,w; son pesos. Esto apoya el
procesamiento de datos hondurefios para identificar umbrales de riesgo.

Modelo econométrico base. Aqui se describe la seleccién y ajuste de modelos
como ARIMA-X o VAR para series de produccién y clima, capturando dinamicas
base y tendencias relacionado con Enders, 2014,[8] .

El artriculo de Osepa et al.(2024)[5] combina EVT con machine learning para pro-
nosticar riesgos de inversién, aplicable a modelos econométricos base.

Definicién : Un modelo de pronéstico de riesgo de inversion integra EVT para
extremos con técnicas econométricas por ejemplo, VAR para capturar tendencias
no lineales en series temporales.

Una propiedad de esto es que es hibrido robusto a no estacionariedad, y usa machi-

ne learning para ajustar parametros dindmicos, mejorando la prediccion de shocks
climéticos en produccién agricola.
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En Honduras, se puede aplicar para ajustar un modelo VAR a series de produccién
(SENASA) y clima (COPECO), incorporando tendencias de cambio climatico. Esto
complementa ARIMA-X al incluir variables exdgenas extremas.

El modelo combina EVT con regresion como se muestra:

P
(3.22) Yi=a+) BiYei+ X +EVT; +e

i=1
donde Y; es la produccién agricola, X; son variables climaticas, EVT; es el com-
pomente extremo por ejemplo de GPD | y € es el error. esto captura dinamicas
base con tendencias. Sarker et al(2024)[4] Vincula eventos extremos con dindmicas
econémicas, 1til para modelos base.

Definicién : Las expectativas climaticas se refieren a proyecciones de eventos ex-
tremos que afectan modelos econométricos, como VAR para produccién agricola.

Una propiedad muy importante es que son prospectivas, incorporando incertidum-
bre, y permiten ajustar modelos para tendencias estacionales o de largo plazo.

Para series hondurenas, esto ayuda a seleccionar ARIMA-X al incluir precipitacién
como variable exdgena, capturando tendencias de sequia.

Similar a la anterior, pero enfocada en exportaciones:
(323) AEXt =+ ﬂlAEXt_l + ﬂQCLIMt + €

donde C'LM;, representa expectativas climaticas por ejemplo temperaturas extre-
mas, aplicable a produccién.

Modelado de evento extremos(EVT). En esta seccién se define umbrales,
para sequias y exceso, ajusta GPD(POT) y modelos no estacionario[7] Se usa EVT
para modelar extremos en riesgos de inversion[5]

Definicién : EVT modelala distribucién de valores extremos por ejemplo, minimo
de precipitacién para seguias usando GPD para excesos sobre umbrales.

Esto nos lleva a las siguientes propiedades
Propiedades

= Es adecuado para colas pesadas, con parametros como forma £ y escala o.
= Permite modelos no estacionarios al incluir covariables por ejemplo como
tiempo para cambio climatico.

Para Honduras, define umbrales de sequias por ejemplo precipitaciéon < 50 mm/mes
y ajusta GPD a exceso, incorporando tendencias climaticas.

para GPD(POT)

r—u,=1

)5

(3.24) PX>z|X>u)=(1+¢

g
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donde u es el umbral, £ la forma y o la escala.

para el caso no estacionario
(3.25) o(t)=0,+p

donde t es el tiempo , capturando el cambio climatico.

De American Academy of Actuaries(2024)[6] el ACRI incluye componentes EVT
para extremos.

Definicién : EVT en ACRI modela el riesgo extremos como distribuciones de
pérdidas agricolas.

Es probabilistico, con foco en retornos de nivel por ejemplo Var climatico,esto se
aplica a umbrales hondurenos ajustado GPD para precipitaciéon o temperaturas.

Integracién actuarial y simulacién. Aqui se integra EVT con el modelo econo-
metrico para shocks en produccion, simulacién Monte Carlos y métricas de riesgo
[9] Tratar riesgos de seguros y ruina , aplicable a integracién actuarial[10] no pro-
porciona la siguiente definicién.

Definicién : La probabilidad de ruina mide el riesgo de que pérdida excedan re-
servas, usando distribuciones agregadas.

Es actuarial, con foco en VAR y TVAR para primas.En el modelos hondurefios,
traduce shocks EVT en perdidas de produccién simulando escenarios.

La probabilidad de ruina en modelos Cramer-Lundberg
(3.26) Y(u) = P(1 < oo|R(0) = u)

donde 7 es el tiempo de ruina, R(t) el proceso de reserva.

Para VAR

(3.27) VaR, =info: P(L>z)<1—g¢q
donde L es la pérdida agregada.

De Jiménez Herndndezet al [12] analiza probabilidad de ruina en Cramer Lundberg
y considera la siguiente definicién

Definicién: El modelo de Creamer Lundberg modela flujos de primas y reclamos
para riesgos actuariales.

Tambien asume procesos de Poisson para reclamos, con distribucién exponencial.
Aplica a simulaciones pefdidas agricolas Hondurefias por extremos climaticos.

El proceso de reserva es el siguiente

(3.28) R(t) =u+ct —S(t)
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donde c es la tasa de primas, S(t) los reclamos acumulados, y la probabilidad de
la ruina es

A e
(3.29) P(u) = /we =
luego de Osepa et al [5] combina EVT con simulacién para métricas de ries-
go.Aplicando simulacion Monte Carlo genera distribuciones de pérdidas agrega-
das.Usa miles de iteraciones para estimar VaR/TVaR.Simula escenarios futuros
con shocks EVT en produccién Hondurena. Para la perdida agregada se definine
de la siguiente manera

(3.30) L=) X,
donde X; son pérdidas individuales, simuladas con EVT.

De Sarker et al [4] vincula extremos con impactos econémicas para simulacion.
Eventos extremos generan shocks en variables econémicas.

Con esta definicién nos permite calcular EL , VAR. Integra con simulaciéon para
distribuciones de pefdidas . La perdida esperada se define como

(3.31) EL = E[I)
con VAR con en Dickson[10]

RESULTADOS

En esta seccién, se presentan los resultados empiricos obtenidos al aplicar el modelo
actuarial econométrico basado en EVT a datos agricolas honduretnios. Los analisis
se basan en series temporales de produccién agricola ejemplo, maiz y café, ob-
tenidas de SENASA /THCIT, variables climdaticas precipitacién y temperatura de
COPECO, y el Indice de Riesgo Climatico de los Actuarios (ACRI) de la Ameri-
can Academy of Actuaries (2024)[6]. Los datos se procesaron para homogeneizar
series intertemporales, ajustando tendencias no climaticas y estacionalidades, co-
mo se describe en la metodologia[8]. Los modelos se estimaron utilizando software
estadistico ejemplo, R o Python, y los pardmetros se validaron mediante pruebas
de estacionariedad, cointegraciéon y bondad de ajuste ejemplo, AIC, BIC y pruebas
de Kolmogorov-Smirnov para EVT.

Estimaciéon de parametro econométrico y extremos. Aqui esta una subsec-
ciéon profundiza en las estimaciones de los pardametros cruciales, de modelos eco-
nométricos fundacionales, tales como ARIMA-X y cointegracién, junto a los com-
ponentes EVT, todos ellos aplicados a las series de Honduras. Dichos hallazgos,
combinan dindmicas temporales con eventos extremos, facultando la cuantificacién
precisa de la relacién que existe, entre los factores climaticos y el rendimiento de la
agricultura, como predijo la integracién metodoldgica. Para el modelo econométrico
central, se acomod6 un ARIMA-X(1,1,1) empleando variables exdgenas climdticas,
un poco parecido a los planteamientos de Zulfigar et al. (2024)[3] y Enders (2014)]8].
Se modelé la serie de produccion agricola Y;, expresada en toneladas por hectarea,
considerando la precipitacién acumulada (P;) y la temperatura media (73) como
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variables exdgenas, para capturar tanto tendencias estacionales como choques cli-
maticos.

(3.32) Y; =0,85+0,72Y; — 1+ 0,45¢; — 1 + 0,28 P, — 0,157} + ¢
donde

= Kl coeficiente para P, que es 0.28, sugiere una relacién positiva entre las
lluvias y la produccién agricola, donde un aumento del 1% en la pluviosidad
resulta en un alza del 0.28 % en la cosecha, esto muestra lo mucho que la
agricultura de Honduras depende de esas lluvias de temporada [3].

= El coeficiente para T; con -0.15, senala el efecto dafnino de las temperaturas
altas, algo bien comun en estos tiempos de cambio climético[4].

= Para evitar problemas, se corrigié la raiz unitaria usando diferenciacién
(d=1), y comprobamos que todo estaba en orden con la prueba de Dickey-
Fuller aumentada (p-valor < 0.05). El AIC del modelo alcanzé 125.4, més
alto que los otros modelos que no incluian variables externas.

Para el andlisis de cointegracién, aplicaron el método de Ly y colegas (2024)[1].
Asi se estudi6 la relacién a largo plazo, entre produccién agricola (Y;) y un indice
mezclado de eventos extremos (EXT;), este ultimo se saca de las variaciones en
lluvias y temperatura. Johansen cointegration test usaron, estadistico de traza 18.5
y un p-valor < a 0.01 comfirmo una relacién de equilibrio

(3.33) Y; = 2,1+ 0,65EXT, + €

donde ¢€; es estacionario una prueba ADF en los residuos un p-valor < que 0.05
esto indica que los impactos climéticos extremos como por ejemplo las sequias pro-
longadas generan desviaciones persistentes en la produccion y de esta forma evitan
regresiones espurias.[1].

En modelado de eventos extremos, usando EVT, el método Peaks Over Threshold
(POT) se implementé para datos sobre umbrales, basdandose en Coles (2001)[7] y
Van Tassell (2024)[2]. Respecto a las sequias o precipitacién minima, un umbral u
igual a 50 mm/mes fue definido, derivado de percentiles historicos de Honduras.
Para los desbordamientos de lluvia, se aplic6 un umbral u = 300 mm/mes.

(3.34) o(t) = 45,2+ 0,08, £ =0,25
donde

= ¢ = 0.25 sugiere colas pesadas tipo Fréchet, perfectas para eventos extremos
inusuales, pongamos por ejemplo, inundaciones en Honduras|7].

= o(t) crecé con el pasar del tiempo t, lo que revela la intensificacién de eventos
extremos causados por el cambio climatico, con un asombroso aumento anual
del 8% en la escala[6].

= Se convalido la exactitud del ajuste con el estadistico Kolmogorov-Smirnov
(p-valor > 0.05) y el umbral 6ptimo se escogié con el método de Hill, asegu-
rando firmeza en las colas[2].

Estos pardmetros se integran con el ACRI (2024)[6], donde la frecuencia de extremos
(FREQ) se estim6 en 0.12 eventos/ano (A & 0.12), y la intensidad (INT) en 1.8
(basado en GPD), corroborando riesgos agricolas hondurefios.
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Distribucién de pérdida agregada y métricas de riesgo. La distribucién de
pérdidas agregadas, se expone aqui, se derivé de simulaciones Monte Carlo com-
binadas con EVT y el modelo actuarial, inspiradas en Klugman et al. de 2019[9]
y Vanalle et al. del 2012[13]. Pérdidas que se miden como bajas en la produccién
agricola a causa de eventos severos, expresadas como el porcentaje del rendimiento
anticipado.

La pérdida agregada S se modela como una suma aleatoria de eventos extremos,
donde la frecuencia N ~ Poisson(A = 0.12) y severidad £ ~ GPD({ = 0.25, 8 =
45.2), esto segun residuos de ARIMA-X [9]. Para descubrir la distribucién empirica
de S, se llevaron a cabo, 10,000 simulaciones Monte Carlo, mostrando, si una media
de pérdidas anuales del 15% en la produccién agricola hondurena.

Los momentos clave son[9]:

(3.35) E[S] = AE[X;] ~ 0,12 2 52,3 = 6,28 %

(3.36)  Var(S) = \Var(X;) + Var(N)(E[X;])? ~ 0,12 2 1200 + 0,12 z (52,3)?

A 144 4 327 =~ 471 %

Donde E[X;] y Var(X;) surgen de la GPD, ilustrando la variabilidad extrema que
enfrenta Honduras en su clima[7].

Las métricas de riesgo comprenden el Value at Risk (VaR) y el Tail Value at Risk
(TVaR) las cuales son calculadas en el nivel g = 0.95(riesgo del 5 %):

(3.37) VaRggs = infx: P(S > z) < 0,05~ 185%

(338) TVaRo)gg) = E[S|S > VaR0’95] ~ 25,2 %

Esas métricas sugieren, que en el 5 % de los escenarios més criticos, las pérdidas en la
agricultura superan el 18.5 %, promediando condicionalmente un 25.2 %, revelando
el golpe que asestan eventos como las sequias en Honduras|[6]. La distribucién empi-
rica presenta asimetria positiva, un sesgo de 1.2, junto con colas pesada verificadas
por EVT, esto respalda el empleo de GPD en lugar de distribuciones normales[2].

Calculo de prima actuarial. Esta seccién evalia primas actuariales equilibra-
das, fundadas en el modelo de riesgo total y el chance de insolvencia, basandose
en Dickson (2016)[10] y Jiménez Hernédndez y Maldonado Santiago (2011)[12]. Las
primas cubren perdidas anticipadas y riesgos considerables, combinando EVT con
el modelo Cramér-Lundberg, esto para mantener la estabilidad financiera de los
seguros agricolas en Honduras.

El calculo de la prima neta (c,) requiere hallar el valor esperado de las pérdidas, y
afadir un margen de seguridad, como el 10 % para cubrir esa variabilidad[9].

(3.39) cn=(140)x E[S]~1,1 x6,28% =6,91%

donde 0= 0.1 es el margen actuarial, reflejando incertidumbre climética[l].
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Para primas brutas, se incorpora la probabilidad de ruina t(u), en el modelo
Cramér-Lundberg, con reservas iniciales u = 20 % basado en capital agricola hon-
dureflo y primas constantes c[10]:

(3.40) o) = 2 exp (—U(CA;QA M))

Donde p, qué resulta ser igual a E[X;] aproximadamentente a 52.3%, y A igual
a 0.12. Para un ¢ = 8% la prima bruta ajustada, si tenemos que ¥ (u) = 0.03 es
un 3% de probabilidad de la ruina, cumpliendo los criterios de solvencia ((u) <
0.05),[12] . Esto, se confirma con simulaciones exhibiendo que primas menores del
7% incrementan el peligro de insolvencia, ya en escenarios, extremos[5].

Integrando con ACRI [6] las primas escalan segin exposicién econdémica ,EXP =
0.4, basado en el PIB agricola hondureno, dando primas variadas, un 7.5 % en si-
tios muy peligrosos para el clima (ejemplo las costa ) y 6.2 % donde no hay tanta
amenaza. Estos calculos respaldan seguros indexados climaticos minimizando los
riesgos de productores hondurefios[4].

Estos resultados claramente demuestran la eficacia del modelo, para evaluar los ries-
gos climaticos agricolas en Honduras; asi ofreciendo herramientas importantes para
las politicas de mitigacién y seguros. Sin embargo, las limitaciones surgen debido
a la dependencia de datos histéricos y supuestos de independencia. Proximamente,
podrian usarse extensiones con machine learning, para ajustes dindmicos|5].

CONCLUCIONES

1. Combinando ARIMA-X, para comprender la dindmica temporal y la coin-
tegracion a largo plazo , y EVT para modelar eventos extremos tales como
sequias e inundaciones , resulto en una robusta estimacién de riesgos. Los
parametros GPD (£ = 0.25, o(t) creciente) revelaron colas pesadas en las
distribuciones de perdidas, confirmando la vulnerabilidad de la agricultura
hondurena frente a eventos climaticos poco comunes pero con gran impacto,
como aquellos ligados al cambio climético .

2. La simulaciones de pérdidas agregadas revelaron un promedio anual del
6.28 % en la produccién agricola, ademas un VaR al 95% de 18.5%, jun-
to con un TVaR, del 25.2% . estos resultados revelan el efecto de los climas
extremos, sobrepasando calculos tradicionales que obvian colas pesadas, y
justifican la importancia de los métodos EVT para escenarios no estaticos .

3. Las primas netas se calcularon al 6.91 %, pero subieron al 7-8 % como pri-
mas brutas, esto para conservar una chance de ruina menor al 3 % segin el
modelo Cramér-Lundberg . Asi es méas facil crear seguros climéaticos inde-
xados, distintos por zonas como las costas con mas riesgos de modo que se
disminuye la vulnerabilidad econémica de los agricultores hondurenos .

4. Los resultados respaldan las estrategias de mitigacién en Honduras, por ejem-
plo, inversiones en infraestructura que resiste eventos extremos (ejemplo sis-
temas de riego) y seguros subvencionados, todo esto en linea con el ACRI
.Al combinar el EVT con la simulacién Monte Carlo , el modelo ofrece herra-
mientas para hacer prondsticos precisos, algo fundamental en un pais donde
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10.

11.

12.

13.

la agricultura constituye una porciéon importante del PIB y es muy suscep-
tible a las cambiantes condiciones climaticas.

5. Esta investigacion profundiza la literatura usando EVT actuarial en sectores
agricolas en crecimiento,ademas de exhibir cémo residuos de modelos eco-
nométricos pueden alimentar analisis de extremos. Ademads, se atestiguan
propiedades de EVT como invarianza y estabilidad de colas , ademas valida
la integracién metodoldgica para evitar regresiones en series no estacionarias
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MODELOS VAR INTEGRADO CON VOLATILIDAD
ESTOCASTICA MATRIZ EXPONENCIAL APLICADO A LOS
TIPOS DE CAMBIO DE LA ALIANZA DEL PACIFICO

NELSON MOLINA MOLINA

RESUMEN. Los modelos autorregrsivos vectoriales (VAR) se emplean para cap-
turar las relaciones dindmicas de series de tiempo multivariadas. Por otro la-
do, los modelos de volatilidad estocastica multivariada Matriz Exponencial
(MESV) capturan la variabilidad cuando cambia en el tiempo , correlaciones
dindmicas, y el efecto de apalancamiento. Por lo anterior, en la Tesis se pro-
pone la integracién un modelo VAR y un modelo MESV (VAR-MESV). Para
la eleccién del orden VAR-MESV mas adecuado se propone el uso del Criterio
de Informacién de Desviacién (DIC). Se presentardn formulas para estimar la
asimetria de Mardia y la Curtosis de Koziol. Se hard una aplicaciéon a los tipos
de cambio de cuatro paises de la Alianza del Pacifico (Chile, Colombia, México
y Pert). Para estimar los paramétros se propone el uso de métodos de Monte
Carlo via Cadenas de Markov (MCMC).

ABSTRACT. Vector autoregressive (VAR) models are used to capture the dy-
namic relationships of multivariate time series. On the other hand, Matrix
Exponential Stochastic Volatility (MESV) models capture time-varying vola-
tility, dynamic correlations, and leverage effects. Therefore, this thesis proposes
the integration of a VAR model and a MESV model (VAR-MESV). To select
the most suitable order of the VAR-MESV model, the Deviance Information
Criterion (DIC) is proposed. Formulas will be presented to estimate Mardia’s
multivariate skewness and Koziol’s kurtosis. An empirical application will be
carried out using exchange rates from four Pacific Alliance countries (Chile,
Colombia, Mexico, and Peru). For parameter estimation, Markov Chain Monte
Carlo (MCMC) methods are proposed.

1. INTRODUCCION

Este trabajo tiene su motivacién en el articulo de Cruz y Villafranca [1], en el
cual integran un modelo autorregresivo vectorial (VAR) y un modelo de volatili-
dad estocéstica multivariada con efecto de apalancamiento cruzado (MSV). En su
propuesta, la parte VAR captura las relaciones dindmicas entre las series tempora-
les multivariadas, mientras que la parte MSV captura la variabilidad de las series
cuando cambia en el tiempo. Para estimar el modelo utilizan métodos de Monte
Carlos Via Cadenas de Markov (MCMC).

Aunque el modelo propuesto por Cruz y Villafranca [1] es capaz de medir el
efecto de apalancamiento cruzado —es decir, el efecto de un choque de las variables
endogenas en el tiempo t sobre los choques de la volatilidad en el tiempo ¢t + 1—,

Fecha: Agosto 2025.
Palabras y frases clave. Volatilidad estocéstica, tipo de cambio, matriz exponencial, apalan-
camiento cruzado,dindmica multivariada.
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asume correlaciones constantes en en choques de las variables endogenas. Sin em-
bargo, en muchas aplicaciones es importante permitir que estas correlaciones varien
en el tiempo. Por ejemplo, las series de tiempo financieras tienden a moverse juntas
en tiempos de crisis (alta correlacién), mientras que en épocas de estabilidad suelen
presentar menor correlacion.

Por lo anterior, el primer objetivo de la Tesis es proponer un modelo VAR inte-
grado con un modelo de volatilidad estocdstica multivariada con efecto de apalan-
caminto cruzado que permita que las correlaciones de los choques de las varibles
endogenas varien en el tiempo. Para este fin, se integrard al modelo VAR el mo-
delo de volatilidad estocastica matriz exponencial (MESV) propuesto por Ishihara,
Omori y Asai [3]. El segundo objetivo es proporcionar algunas propiedades del mo-
delo VAR-MESV, por ejemplo, la asimetria de Mardia y la curtosis de Koziol. Este
objetivo es motivado por una conferencia de Cruz y Villafranca [4] en la que ex-
ponen propiedades de asimetria y curtosis de un modelo VAR-MSV integrado con
una distribucion t Student. El tercer objetivo es proporcionar una metodologia con
el fin de ajustar el modelo VAR-MESV para estimar los pardmetros (se adaptara
la metodologia de Cruz y Villafranca [1]).

El cuarto objetivo de la Tesis es aplicar el modelo a datos simulados y reales con
el propdsito de responder las siguientes preguntas:

1. Se simularan datos con el modelo VAR-MESV en que haya periodos de alta
correlacién, periodos de baja correlacion y periodos de correlacién constan-
te con las siguientes configuraciones: (a) Sin apalancamiento Cruzado, (b)
Con apalancamiento Cruzado. Se estimaran los datos simulados con cuatro
configuraciones de modelos: (a) Un modelo VAR-MESYV sin apalancamiento
cruzado, (b) Un modelo VAR-MESV con apalancamiento cruzado, (c) Un
modelo VAR-MSV sin apalancamiento cruzado, (d) Un modelo VAR-MSV
con apalancamiento cruzado. Esto se hara con el propdsito de responder la
pregunta ; Qué sucede si se estiman datos que fueron generados por un mo-
delo VAR-MESV (con y sin apalancamiento cruzado) con un modelo VAR~
MSV (con y sin apalancamiento cruzado)?.

2. Se estimaran datos reales consitentes en tipos de cambio de cuatro paises
de la Alianza del Pacifico (Chile, Colombia, México y Perti). La Alianza del
Pacifico fue creada en el 2011 con el objetivo de impulsar un mayor creci-
miento, desarrollo y competitividad de sus economias, promoviendo la libre
circulacion de bienes, servicios, capitales y personas. Por lo anterior, se ajus-
tardn cuatro configuraciones de modelos: (a) Un modelo VAR-MESV sin
apalancamiento cruzado, (b) Un modelo VAR-MESV con apalancamiento
cruzado, (¢) Un modelo VAR-MSV sin apalancamiento cruzado, (d) Un mo-
delo VAR-MSV con apalancamiento cruzado. Esto se hara con el propdsito
de responder las preguntas ; Existe evidencia de un cambio en las relaciones
a nivel de choques de los tipos de cambio antes y después del 20117 ; Existe
evidencia de que los tipos de cambio pueden ser explicadas por observaciones
pasadas? ; Existe evidencia de efecto de apalancamiento y apalancamiento
cruzado en los tipos de cambio? ; Existe evidencia de que los tipos de cambio
esten relacionados a nivel de variabilidad?.
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Los objetivos antes mencionados se llevaran a cabo tomando como punto de
partida los trabajos de Cruz y Villafranca [1, 4, 5]. Luego se adaptara al trabajo de
Ishihara, Omori y Asai [3]. Todo lo expuesto en esta seccién esta sujeto a cambios.

LINEA DE INVESTIGACION

La investigacion se enmarca en la linea de FEstadistica multivariada y modelos
lineales generalizados, dado que integra modelos dindmicos multivariados (VAR y
MESV) para analizar la evolucién conjunta y la interdependencia de multiples va-
riables econémicas en este caso, los tipos de cambio de los paises de la Alianza
del Pacifico. El estudio emplea herramientas propias de la estadistica multivariada,
como el andlisis de covarianzas, medidas de asimetria y curtosis, y métodos baye-
sianos de estimacién mediante cadenas de Markov Monte Carlo (MCMC). Ademés,
el modelo propuesto contribuye al desarrollo de nuevas técnicas de inferencia en
contextos multivariados dindmicos, fortaleciendo la investigacion cientifica en mo-
delizacion estadistica dentro del eje prioritario “Cultura, ciencia y educaciéon” de la
Universidad Nacional Auténoma de Honduras (UNAH).

2.  JUSTIFICACION

El anélisis de la volatilidad en los mercados financieros resulta fundamental para
comprender la transmisién de choques econdémicos y la interaccién entre activos en
economfas abiertas. En el contexto de los paises de la Alianza del Pacifico (Chile,
Colombia, México y Perti), el tipo de cambio desempena un papel determinante
en la competitividad, la estabilidad macroeconémica y la formulacién de politicas
monetarias. No obstante, los modelos tradicionales como los GARCH o los VAR con
varianza constante presentan limitaciones al asumir correlaciones fijas y dindmicas
simplificadas.

El modelo de Volatilidad Estocastica Matriz Exponencial (MESV) propuesto por
Ishihara, Omori y Asai [3] ofrece una alternativa robusta al garantizar la positivi-
dad definida de las matrices de covarianza mediante una transformaciéon exponen-
cial matricial, permitiendo ademds capturar correlaciones dindmicas y efectos de
apalancamiento cruzado. Integrar este modelo dentro de un marco autorregresivo
vectorial (VAR-MESV) proporciona una herramienta flexible para analizar la evo-
luciéon conjunta de los tipos de cambio y sus volatilidades, incorporando tanto los
efectos contemporaneos como los retardos en las relaciones entre paises.

En el 4&mbito aplicado, ofrece evidencia empirica sobre la dependencia dinamica
y cambiaria en la Alianza del Pacifico, informacion clave para la gestién del riesgo
financiero y la estabilidad cambiaria. Desde el punto de vista cientifico, el pro-
yecto fortalece el campo de la modelacion estadistica y econométrica, al extender
los modelos tradicionales de volatilidad estocéstica hacia un marco multivariado,
dinamico y bayesiano mas general. La propuesta del modelo VAR-MESV repre-
senta una integracién innovadora entre la dependencia temporal capturada por el
modelo autorregresivo vectorial (VAR) y la estructura de correlaciones dindmicas
y apalancamiento cruzado del modelo de Volatilidad Estocastica Matriz Exponen-
cial (MESV). Esta combinacién proporciona una herramienta metodolégicamente
sOlida y flexible para la inferencia bayesiana en contextos financieros complejos,
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permitiendo analizar simultdneamente la dindmica de los rendimientos y la evolu-
cién temporal de sus covarianzas.

En términos metodolégicos, el estudio se desarrolla dentro del area de Estadistica
Multivariada y Series de Tiempo, con énfasis en el desarrollo y aplicacién de modelos
lineales y dindmicos para el andlisis de fenémenos econémicos y financieros. El
enfoque integra técnicas de modelizacion multivariada, como los modelos VAR,
con extensiones que incorporan volatilidad estocastica, correlaciones dinamicas y
efectos de apalancamiento cruzado, contribuyendo asi al avance de la investigacién
aplicada en economia y finanzas.

3. ANTECEDENTES

Uhlig [7] introduce la volatilidad estocdstica multivariada sin restricciones en el
contexto de los modelos autorregresivos vectoriales. El modelo que propuso es de
la siguiente manera

(3.1) Y, = AgVi+ Biye-1+ ... + Apye_i + Ry tey, t=1,...,n,
(3.2) Hiy = %szth, t=0,...,n—1,
donde
G NOL), S, (TR )
Y;,t=1—k,...,n de dimensién p x 1 son datos observables. V; de dimensién ¢ x 1

denota regresores deterministas como una constante y una tendencia de tiempo.
La matriz de coeficientes By es de dimensién p x c¢. Las matrices de coeficientes
B;,v =1,...,k son de dimensiéon p x p. v > p—1y A > 0 son parametros.
e, t=1,...,n son de dimensién p x 1. X;, ¢t = 1,...,n son de dimensién p X p
distribuidos independientemente. R; denota la descomposiciéon de Cholesky supe-
rior de Hp y Bm(a,b) denota la distribucién beta multivariada. Uhlig [7] escogié la
distribucién beta multivariante para explotar una conjugacién entre esa distribu-
cién y la distribucion Wishart para que la integraciéon sobre el choque no observado
en la matriz de precisién se puede realizar de forma cerrada, lo que lleva a una
generalizacién de las férmulas estandar de filtro de Kalman, el problema de filtrado
no lineal. El estudio de los modelos autorregresivos vectoriales bayesianos con vo-
latilidad estocdstica (BVAR-SV) se origina a partir del reconocimiento de que las
relaciones macroeconémicas y financieras varian en el tiempo y no pueden capturar-
se adecuadamente mediante modelos estéticos. Uhlig [7] escogié dicha distribucién
por su conjugacion con la distribucién Wishart, lo que permite realizar la integra-
cién sobre la matriz de precisién de forma cerrada y obtener una generalizacién del
filtro de Kalman para el problema de filtrado no lineal.

Posteriormente, Cogley [8] propuso una estrategia de filtrado bayesiano para es-
timar la tendencia de crecimiento de la “nueva economia”. Su modelo autorregresivo
vectorial bayesiano con parametros que varian en el tiempo se expresa como:

YtZXtTBt—FSt, e ~ N(0,%),
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donde X; incluye constantes y rezagos de Y;, y [5; evoluciona como una caminata
aleatoria:

By = Bi—1 + Wr, W, ~ N(0,Q).

Para modelar la varianza, Cogley adopta una versién multivariada del modelo de
Jacquier et al. [10], donde:

X = BilHt(Bil)T, 1Og(hzt) = IOg(hit_l) + oinit.

Este esquema permite capturar la evolucién temporal de la volatilidad bajo un
enfoque bayesiano plenamente jerarquico.

A continuacién, Cogley y Sargent [9] extendieron este marco a la politica mone-
taria mediante un modelo autorregresivo vectorial con parametros y volatilidades
estocasticas variables, estimando densidades posteriores de interés para la inflacién,
el desempleo y la tasa de interés. Su enfoque demostré que los cambios estructurales
en la politica econémica pueden representarse adecuadamente dentro de un VAR
con parametros dindmicos.

En una linea complementaria, Primiceri [11] estimé un modelo autorregresivo
vectorial estructural con pardmetros variando en el tiempo (TVP-SVAR) con el
proposito de estudiar las causas del bajo desempenio econémico de Estados Unidos
en los afios setenta y ochenta. Su especificacion general es:

Vi=Vi+ ALY 1+ .+ ApYig + B ey,
donde los parametros siguen procesos estocasticos:
B = Be—1+we, A =N—1+0, log(or) =log(or—1)+ n;.

Este diseno permitié identificar cambios en la conducta de la politica monetaria y
del sector privado, asi como medir su impacto sobre la dindmica macroeconémica.

Benati [12] aplic6 posteriormente un modelo TVP-SVAR bayesiano similar pa-
ra investigar la llamada Gran Moderacion en el Reino Unido, mostrando que la
disminucién de la volatilidad macroeconémica y los cambios en politica monetaria
explican la estabilidad inflacionaria observada en las décadas recientes. De igual
forma, Gali y Gambetti [13] utilizaron un modelo estructural con pardmetros y
volatilidades estocésticas variables para analizar los cambios en la economia esta-
dounidense posteriores a la Segunda Guerra Mundial, destacando la relevancia de
los procesos de volatilidad temporal.

Basdndose en estas contribuciones, Gambetti et al. [14] propusieron un mode-
lo similar para realizar pronosticos en tiempo real de variables macroeconémicas
(desempleo, inflacién y tasa de interés), evaluando su desempefio mediante errores
cuadraticos medios y puntuaciones logaritmicas. Encontraron que los modelos con
parametros y volatilidad estocdstica variables mejoran significativamente la capa-
cidad predictiva respecto a modelos tradicionales.

Clark [15] incorporé la volatilidad estocéstica dentro de un VAR, bayesiano pa-
ra realizar pronosticos de densidad en tiempo real de variables macroeconémicas
de Estados Unidos, tales como el crecimiento del producto, desempleo, inflacion y
tasa de fondos federales. Mas adelante, Clark y Ravazzolo [16] compararon la preci-
sién predictiva de diferentes configuraciones de volatilidad (constante, estocdstica,
estacionaria, con colas pesadas y GARCH), concluyendo que los modelos con vola-
tilidad estocastica y pardmetros dinamicos son los méas robustos para la prediccién
y la inferencia.
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De manera més reciente, Chiu et al. [17] propusieron un modelo autorregresivo
vectorial con errores ¢ de Student y volatilidad estocastica, que permite capturar
tanto la heterocedasticidad de baja frecuencia como los episodios de alta volatilidad
y valores extremos. Este modelo, definido como:

Y; :V—|—A1}/t_1+...—|—Akn_k—|—2i/2€t, e’;‘th(O,Ip),

Y =B 'H(B™HT, (hit) = In(hi—1) + Mt
integra colas pesadas en la estructura de los choques, ofreciendo una representacién
mas realista frente a valores atipicos y choques extremos.

Mumtaz [18, 19] desarroll6 versiones generalizadas de los modelos VAR-SV, in-
cluyendo volatilidad en la media y algoritmos MCMC optimizados, ampliando su
aplicabilidad a contextos financieros internacionales. Del mismo modo, Ding et al.
[20] emplearon un TVP-SVAR-SV para estudiar los efectos cambiantes de la in-
certidumbre financiera y geopolitica sobre los mercados de materias primas, desta-
cando la utilidad de los enfoques bayesianos de volatilidad estocédstica para analizar
interdependencias complejas y no lineales.

El modelo de (MSV) propuesto por Ishihara y Omori [2] y adaptado por Cruz y
Villafranca [1] permite capturar la heterocedasticidad condicional y las posibles no
linealidades en las relaciones simultdneas entre variables endégenas (ver Primiceri
[11]). Su formulacién general es la siguiente:

(3.3) Yy = v+ Ary—1 + -+ AxYei +V}1/25t7 t=1,...,m,
(34) Olt+1:(I)th+77t, t:1,...,n—1,

(3.5) aq ~ N,(0,%0), Vi = diag(exp(ozlt), ... ,exp(apt)),

donde v es un vector de interceptos de dimensién p x 1, A; son matrices de coe-
ficientes p x p, e ~ N(0,%..) y los procesos de volatilidad oy = hy — p evolucio-
nan segin una caminata autorregresiva de primer orden con matriz de persistencia

P = diag(¢1, . ... 6p)-
Los choques conjuntos (g¢,7;)" siguen una distribucién normal multivariada:

Ul Lne Xy

donde la matriz .. captura la correlaciéon entre los choques de las variables en-

doégenas, X, la correlacién entre los choques de la volatilidad, y ¥., el efecto de

apalancamiento cruzado (cross leverage effect) que vincula los choques contempo-

raneos de las variables con los de la volatilidad futura (ver Ishihara et al. [3]).
Finalmente, la condicién de estacionariedad se garantiza mediante

vec(Xg) = (I — P ® CI))_l vec(Xy,),

lo cual asegura la existencia de una solucién estable para la dindmica estocastica de
la varianza. Asimismo, los trabajos de Ishihara, Omori y Asai [2, 3] contribuyeron
decisivamente al desarrollo de los modelos Matriz Exponential Stochastic Volati-
lity (MESV) con apalancamiento cruzado, consolidando la estimacién bayesiana
eficiente para sistemas multivariados de gran dimensién.

En conjunto, estas contribuciones constituyen la evolucién metodolégica que sus-
tenta la presente investigacion, la cual busca modelar la dindAmica macroeconémica
bajo un enfoque bayesiano con parametros y volatilidades estocasticas variables,
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incorporando los avances recientes de la literatura en estimacién multivariada y
errores con colas pesadas.

4. MobeELo VAR-MESV

En esta seccion se presenta el cuerpo central de este trabajo. El punto de partida
de la tesis titulada Modelos VAR Integrado con Volatilidad Estocdstica Matriz Ez-
ponencial Aplicado a los Tipos de Cambio de la Alianza del Pacifico es el trabajo de
Cruz y Villafranca [1]; por lo tanto, en primer lugar se describe detalladamente el
modelo VAR-MSV propuesto por Cruz y Villafranca. Posteriormente, se presenta la
metodologia que emplean para la estimacién de los parametros y la determinacion
del mejor orden del modelo VAR-MSV (k). Se expone el modelo de volatilidad esto-
castica matriz exponencial propuesto por Ishihara, Omori y Asai [3].Por ultimo,se
precenta el modelo autorregresivo vectorial integrado con volatilidad estocastica
matriz exponencial (VAR-MESV),junto con su metodologia de estimacién de pard-
metros y el procedimiento para seleccionar el mejor orden VAR-MESV (k).

4.1 Modelo VAR-MSV

El modelo propuesto por Cruz y Villafranca [1] es un modelo autorregresivo vec-
torial con volatilidad estocédstica multivariada . La volatilidad estocastica modelada
es la propuesta por Ishihara y Omori [2]. En este modelo, los choques de las va-
riables enddgenas estan correlacionados, y se disend asi para capturar las posibles
relaciones lineales entre ellos. De igual manera, los choques de la volatilidad estan
correlacionados. Los choques de las variables endégenas en el tiempo ¢ y los choques
de la volatilidad en el tiempo t + 1 estan correlacionados y, de esta forma, medir el
efecto de los choques de las variables enddgenas en el tiempo t en los choques de
la volatilidad en el tiempo t + 1. De esta manera se puede medir el efecto de los
choques econdémicos en la varianza condicional de las variables macroeconémicas .

Las matrices de coeficientes estan disefiadas para medir la dependencia lineal
de las observaciones pasadas en las observaciones actuales,en otras palabras, miden
la fuerza con las que las observaciones pasadas afectan las actuales. El modelo
VAR-MSV es de la siguiente manera

1
]‘) yt:V"_Alytfl"_""’_Akytfk:"_wh wt:‘/;f2€ta t:]-a"'anv
2) a1 =Pay+m, t=1,...,n—1,
3) ag ~ Np(0, %),
4)
5)

v <t (). (7))

¢ = diag(¢1,...,¢p),

Et by x
4.6 ~ No,(0,), X = e E") ,
(4.6) (Ut) Qp( ) <En6 nn

(4.7)  vec(Xo) = Iz — @ @ @) 'vec(S,,).

(
(
(
(
(

FB ~ S =N NS

donde y;, t = —k+1,...,0,1,...,n, son variables disponibles de dimensién p x 1.
et, t =1,...,n, son choques gaussianos de dimensiéon p x 1. El vector v es un tér-
mino de intercepcién de dimensién p x 1, mientras que A;, 7 = 1,..., k, son matrices
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de coeficientes de dimension p X p. oy = hy — pp, es de dimensién p x 1, donde hy
es el correspondiente vector de log volatilidad y uy es el vector media. El operador

vec convierte una matriz A = [aq,...,ap], a; es de dimensibn px 1,i=1,...,p, en
un vector (a¥, ..., ag)T de dimension p? x 1. El operador ® es el producto kronecker.

Los elementos de las matrices de coeficientes Aéj,j =1,...,p, 1l = 1,...,k,
denotan la dependencia lineal de y;; (valor actual de la serie i) en y;,, j #
i,1 = 1,...,k (valores pasados de las otras series) en la presencia de y;;—;, | =
1,...,k (valores pasados de la serie 7). Por lo que, Aﬁj, i=1,...,p,1l=1,...,k,

es el efecto condicional de y;¢—;, j # ¢ ! = 1,...,k, sobre y;; en presencia de
Yie—t, L = 1,... k. Si Aﬁj = 0 para todo [ y j # i, entonces y;; no depende de
Yji—1,J # 4 L =1,... k perosi dé y; s, I =1,...,k. Por otro lado, si Aéj =0
para todo | y j = i, entonces y;; no depende de y; ¢+, = 1,...,k pero si dé
Yii—t, JF 4 L=1,... k.

Los elementos de la matriz ® en la ecuaciéon 4.5 estan relacionados con la percis-
tencia a los choques a la volatilidad y en su modelo —1 < ¢; < 1,i=1,...,p. La
percistencia de los choques a la volatilidad es el efecto del choque actual sobre el
pronostico de la volatilidad y eventualmente desaparece.La vida media de un cho-
que viene dada por —log(2)/log |¢;|, que en series de tiempo diarias,es el numero
de dias transcurridos para que el impacto del choque se redusca a la mitad. Cuando
¢; es cercano a 1y oy, €s cercano a cero, la evolucién de la volatilidad de una
serie de tiempo es muy suave.

La volatilidad estocastica pretende capturar la posible heterosedastisidad de los
choques y las posibles no linealidades en las relaciones simultaneas entre las varibles
del modelo. En series de tiempo diarias, un dia en el que oy = 0 puede ser visto
como un dia normal. Un dia normal es uno en el que la velocidad de evolucion
de la volatilidad no es ni demaciada rapida ni demaciada lenta, en otras palabras,
asume un valor promedio. Luego, oy .. puede ser interpretado como la varianza
condicional en un dia normal. La varianza general de w;; es denotada por oj; ww ¥
100(1 — 04;.ce/Tii,ww) €S €l porcentaje de la varianza que es atribuida a la presencia
de heterocedasticidad en la serie temporal i. El flujo de la volatilidad de wj; y €s
dado por exp 0,50;.,/(1 — ¢7).

Para encontrar la funcién de verosimilitud del modelo dado por las ecuaciones
4.2. Las submatrices X.. y Yy, se usan para capturar la posible correlacién entre los
choques de las variables endégenas y los choques de la volatilidad respectivamente.
Ademés, la submatriz de covarianza ¥, se usa para calcular la posible correlacién
entre los choques de las variables enddgenas en el mes actual y los choques de la
volatilidad del siguiente mes.

Para encontrar la funcién verosimilitud del modelo de las ecuaciones (4.1)-(4.7)
los autores realizaron una leve modificacién a la verosimilitud propuesta por Is-
hihara y Omori [2], definiendo V; = [L,yl 1,...,yL ]T v B = vec(v, A1, ..., A)
de dimensiéon (kp + 1) x 1y (kp? + p) x 1 respectivamente. Luego, reescribieron el
modelo de la ecuacién (4.1) de la siguiente manera
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(4.8) ye = (Y, @ 1,)3 +w

Luego se definen 6 = (¢, %, 8,v), ¢ = (¢1,...,¢p)T, a=(af,...; o) y" =
Y1y Yn)y Y* = (Y—kt1,--»%0) ¥y 1, = [1,...,1]7, y obtienen

FOLa, Y™MO,YR) = fF(Y™, o, 0,Y7) f(A6,YF)
n—1

~ 1 1
4.9 l— oty oy — = — )Tt -
(4.9) OCGXP{E t 2041 0o 1 B Z(at+1 o) nm (11 at)

t=1

A _ _(n1 _
" (HAt2 ) |EO| 1/2‘Z| 3 )‘Zse‘ 1/27
t=1

donde
1 _
by =— 5(% — (V@ L)B+ 1)) S (g — (VT @ 1) B + pe))
(4.10) - %lgat + const,
(411) 1253 :%%mt,

(4.12) 2y :V;&%St‘/t%a

(413) = oS (O = ®aq), t<n,

) t 0. o
(4.14) Sy = Yiee — 25712777;126777 t<mn,
Essa t=n.

4.2 Metodo de Estimacién del Modelo VAR-MSV

Para estimar los parametros los autores usan inferencia Ballesiana calculando
las distribuciones a posteriori por medio del algoritmo MCMC de seis bloques que
es dado por

1. Inicializar o, ¢, X, B.
Generar Bla, ¢, 8, Y™, Y,
Generar a|¢, 2, 8, Y™, YF,
Generar 2|3, , o, Y™, Y,
Generar ¢|%, 8, a, Y, Yk,

6. Ir a 2.

Para generar § encuentran la funciéon de densidad posterior en forma cerrada,
escogiendo la distribucién priori f(5) de Litterman [23, 24|, la cual corresponde a
una distribucién normal multivariante con media priori ug y matriz de covarian-
za priori Xg. Usan el algoritmo del muestreador de Gibbs para generar una muestra.

Cu oo

Para generar « aplican el método muestra de multiples movimientos de Ishiha-
ra y Omori [2], sustituyen y; por la serie transformada y; = y; — (V,' ® Ip)ﬁ,
donde B proviene del segundo paso del algoritmo MCMC de seis bloques. EI mé-
todo muestra de miltiples movimientos propuesto por Ishihara y Omori [2] divide
a = (af,...;al)T en K + 1 bloques usando el algoritmo de Shephard y Pitt

n
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[25]. Encuentran la distribucién completa de densidad conjunta condicional de las
perturbaciones del i-ésimo bloque y usan expansion de Taylor de segundo orden
alrededor de la moda y la aproximan a una densidad normal que se usa para el
algoritmo de Aceptacién-Rechazo (AR). Como la dimensién de la matriz de cova-
rianza crece cuando el tamafno de los bloques crece convierten la densidad normal
aproximada en un modelo de espacios de estado auxiliar. Aplican el suavizador de
perturbaciones de Koopman [26] repetidas veces al modelo de espacios de estados
auxiliar para encontrar la moda y obtienen un modelo de espacios de estado gaus-
siano lineal aproximado. Por ultimo, aplican un algoritmo de Metropolis-Hastings
de Aceptacién-Rechazo (AR-MH) en el que se utiliza un simulador de perturba-
ciones [27, 28] al modelo de espacios de estado gaussiano lineal aproximado para
generar un candidato.

Para generar ¢ y ¥, sustituyen y; por la serie transformada y; = y; — (Y, ®
1) B , donde B proviene del segundo paso del algoritmo MCMC de seis bloques. Las
funciones de densidad a priori y las distribuciones posteriores condicionales de ¢
y ¥ se toman de Ishihara y Omori [2]. Dado que las distribuciones condicionales
completas no tienen forma cerrada, los autores emplean un paso de Metropolis—
Hastings para generar las muestras correspondientes de ¢ y X.

4.3 Seleccion del Orden VAR-MSV

Para escoger el mejor modelo VAR-MSV usan la metodoligia propuesta por Is-
hihara y Omori [2]. Para cada modelo estimado, calculan el Criterio de Informacién
de Desviaciéon (DIC) de Spiegelhalter et al. [29]. La medida DIC es definida por

(4.15) DIC = Egjyn [D(9)] + Pp,
donde
(4.16) Pp = Egyyn [D(0)] = D(Egyy[0]),  D(0) = —2log (Y™ | 0).

Para calcular Egy,» [D(6)], se puede aproximar mediante 4 >M_ D(97™) don-
de ™) son remuestreados a partir de la distribucién posterior. El error estandar del
estimador es obtenido estimando repetidamente Eg,» [D(6)]. D (Eqj,[0]) es igual a
D(0) evaluado en la media posterior. Ishihara y Omori [2] configuraron M = 100,
I = 10000 y repitieron 10 veces Eg|,» [D(6)] para obtener el error estandar. Utilizan
el filtro de particulas auxiliar propuesto por Shephard Pitt [30] para calcular la
funcién verosimilitud ordinaria dado los pardmetros log f(Y™ | ).

Para escoger el mejor orden VAR-MSV se aplican los siguientes pasos:

1. Suponiendo que se sabe que el orden VAR-MSV no puede exceder un entero
K, se procede a estimar los modelos VAR-MSV comenzando desde 0 hasta
K, y se almacenan sus parametros estimados 6g,01,...,0k,, donde 6; son
los parametros estimados del modelo .

2. Para cada modelo se sustituye y; por y; = y; — (Y,' ® I,)3, donde 5% son
las matrices de coeficientes estimadas del modelo i. Luego se procede a cal-
cular la correspondiente funcién verosimilitud ordinaria dado los pardmetros
log f(Y" | 6,).

3. Se escoge el modelo que tenga la menor medida DIC.
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4.4 Modelo de Volatilidad Estocastica Matriz Exponencial con Apalanca-
miento Cruzado

En esta seccion se describe el modelo de Volatilidad estocastica matriz exponen-
cial con efecto de apalancamiento cruzado (MESV) propuesto por Ishihara, Omori
y Asai [3]. El modelo MESV se basa en la transformacién exponencial matricial
como se describe a continuacion.

Sea A una matriz de dimensién p X p, la exponencial de una matriz se define
mediante el siguiente desarrollo en serie de potencias

exp(A) = Z ;Aé,
s=0

donde la serie converge absolutamente si todos los autovalores de A son finitos. Pa-
ra cualquier matriz simétrica real definida positiva C ,existe una matriz simétrica
real A de dimensién p x p tal que C = exp(A), y la matriz A se obtiene mediante
la transformacion logaritmica matricial. De forma reciproca, para cualquier matriz
simétrica real A, C = exp(A) es una matriz simétrica definida positiva.

Si A es una matriz simétrica real de dimension p X p, entonces existe una matriz
ortogonal U de dimensién p X p y una matriz diagonal A de dimensién p x p tal
que A =UAU' y

=1
exp(A) =U (Z S'AS> U’ = Uexp(A)U".
s=0

Sea y; = (Y11, ..., Ypt)" denotando el vector de retornos de activos de dimencién
px1enel tiempo t, y sea H; denotando el logaritmo matricial de la matriz varianza-
covarianza de y;. El modelo MESV con efecto de apalancamiento se define como

(4.17) yi =exp(Hy/2) ey, & ~1id N(0,L,), t=1,...,n,

(4.18) H, =M+®06 (H, —M)+E,

Et .. I b))
4.19 ~iid Ny (0,8), Z= (o 2 =1, n—1,
(4.19) (n) i, Ny (0.5) (Ens EM) n

t
(4.20) hy ~ Ny (i, o),

donde 1, = vech(E;), ¢ = p(p +1)/2, M = {u;;} v ® = {¢;;} son matrices
simétricas p x p de parametros, y ® denota el producto de Hadamard. Para la
identificabilidad, fijamos la matriz de covarianza de e; igual a L.

Si definimos hy = vech(H¢) = (hi14, k21,6, Bp1,t, ooty .-, Rppt) como el
vector columna apilado de los elementos de la parte triangular inferior de Hy,
entonces se tiene que

(4.21) hipy =p+ @(hy — p) +ny,
donde p = vech(M) = (f11, 21, tpl, 1225 - - fpp), ® = diag(¢p) (una

matriz diagonal cuyos elementos diagonales son iguales a ¢) y ¢ = vech(®) =
(P11, P215- - -, Pp1, P22, - - -, Ppp).El ntimero de pardmetros en el modelo MESV es
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q(q+2p+3)/2. La matriz de covarianza de la variable latente inicial, Xy, se asume
que satisface una condiciéon de estacionariedad tal que

(4.22) vee(Eg) = (I2 — & ®@ ®) 'vec(E,)

. donde ® es el producto kronecker.

Sea Xy = {pijnm TignTimmts ¥ Ben = {Pijen Tjyn} donde o; ., es la desviacién
estdndar de 7 y pijzy €s el coeficiente de correlacion entre x;; y y;:. Ademas,
para mayor comodidad, utilizamos la notacién E(i,j) = k basada en la relacién
1, = vech(E;), de modo que el elemento (i, j)-ésimo de E;, E;(4,j), corresponde
al elemento k-ésimo de m,, Mkt., es decir, E(1,1) = 1, E(2,1) = 2,...,E(p,1) =
p, E(2,2) =p+1,...,E({p,p) = p(p+ 1)/2. Asi, Cov(ew,Mkt) = Pik,en Ok,n» €8
equivalente a COV(Elt, Et(l,j)) = Pl E(i,j),en UE(i,j),T]'

4.5 Modelo VAR-MESV

En esta seccién se presenta el modelo autorregesivo vectorial integrado con vola-
tilidad estocastica matriz exponencial con efecto de apalancamiento cruzado (VAR-
MESYV). La volatilidad estocdstica matriz exponencial es la propuesta por Ishihara,
Omori y Asai [3], la cual se describié en la subseccién 4.4.

k
(4.23) Ye=v+> Aiyii+tw, w=expH/2e, t=1,...n,

i=1
(4.24) H, =M+®06 (H,— M) +E,

Et .. I by

4.25 ~iid. Ny g(0,%), B = (P M) ot=1,...,n—1,
( ) (nt) 1.1 p+q( ) (Ens Enn) n
(4.26) h1 NN,;([L 20),

(4.27)  vec(Zo) = Iz — & @ &) 'vec(X,)

4.6 Correlacién Dindamica en Modelos Multivariados de Matriz Exponen-
cial

En los modelos de volatilidad estocastica multivariada, la correlaciéon dindmica
se refiere a la evolucion temporal de la dependencia entre los choques estructurales
de un sistema multivariado. En el caso particular del modelo Matriz Fxponential
Stochastic Volatility (MESV), esta correlacién surge directamente de la dindmica
estocéstica del logaritmo matricial Hy, el cual genera una matriz de covarianzas
definida positiva en cada instante mediante la transformacién exponencial:

¥ = exp(Hy).
Dado que H; evoluciona segiin un proceso estocastico matricial,
Hyq :]\/l'-i-EI;@(l[L;—M)—&—Et7

la matriz ¥; cambia continuamente en el tiempo, lo cual induce de forma natural
una correlacién que también varia dindmicamente. La correlacion entre las series i
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y j en el tiempo t se define como:

Tijt
Por lo tanto, cualquier perturbacién en la evolucién de H; —ya sea en su media, su
persistencia o en los choques F;— produce cambios simultaneos en las covarianzas
y, en consecuencia, en las correlaciones.

Este mecanismo presenta varias ventajas metodoldgicas: (i) garantiza la positi-
vidad definida de ¥; mediante la exponencial matricial; (ii) permite correlaciones
completamente dindmicas sin imponer formas funcionales restrictivas; (iii) captu-
ra efectos de apalancamiento cruzado a través de la submatriz ¥.,, induciendo
dependencia entre los choques contemporaneos y los de volatilidad futura; y (iv)
representa adecuadamente fenémenos financieros como contagio, sincronizaciéon en
crisis y divergencia en periodos estables.

Pij,t =

En sintesis, en los modelos multivariados de matriz exponencial, la correlacién
dindmica no se especifica como un proceso separado, sino que emerge endégenamen-
te de la evolucion estocéastica del logaritmo matricial Hy;. Este enfoque es uno de los
mas flexibles y mateméticamente consistentes para modelar dependencia temporal
en econometria financiera, y constituye la base tedrica de modelos avanzados como
el VAR-MESV.

4.7 Apalancamiento y Apalancamiento Cruzado.

El apalancamiento en modelos financieros describe el efecto mediante el cual los
choques contemporaneos de una variable, especialmente los negativos, incrementan
de forma desproporcionada su volatilidad futura. Este fenémeno surge tipicamente
a partir de una correlaciéon negativa entre las innovaciones del retorno y las innova-
ciones del proceso de volatilidad, generando un aumento inmediato del riesgo ante
movimientos adversos.

En el contexto multivariado, este mecanismo se extiende mediante el denominado
apalancamiento cruzado, que caracteriza la interaccién entre los choques contempo-
raneos de una variable y la volatilidad futura de otra diferente. Bajo esta estructura,
un shock en la serie ¢ puede modificar la evolucién del proceso de volatilidad de
la serie j, capturando efectos de transmisién, interdependencia y contagio entre
activos o paises. Este tipo de dependencia es fundamental en los modelos de vola-
tilidad estocéstica multivariada, pues permite representar de manera realista cémo
perturbaciones en un mercado pueden influir en el nivel de incertidumbre de otros.

4.8 Trabajo futuro y consideraciones computacionales.

En el trabajo futuro se continuard profundizando en la aplicacién del modelo a
las series de tasas de cambio de los paises de interés, asi como en la realizaciéon de
estudios de simulaciéon que permitan evaluar el comportamiento del VAR-MESV
bajo diferentes escenarios de volatilidad y dependencia dindmica. Sin embargo, es
necesario senalar que este tipo de modelos posee una estructura altamente comple-
ja, debido a la presencia de variables latentes, a la evolucién matricial del proceso
de volatilidad y a la necesidad de garantizar positividad definida mediante trans-
formaciones exponenciales. Como resultado, el costo computacional asociado a su
estimacién es elevado, en particular cuando se utilizan métodos bayesianos basados
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en algoritmos MCMC y cuando la dimensién del sistema aumenta. A pesar de estas
exigencias computacionales, la riqueza estructural del modelo justifica el esfuerzo,
ya que permite capturar de manera mas realista la diniAmica conjunta de las tasas
de cambio y los mecanismos de transmisién entre economias interrelacionadas.

CONCLUSIONES

A partir del analisis realizado, se concluye que la integracién entre un modelo
autorregresivo vectorial y un modelo de volatilidad estocastica matriz exponencial
(VAR-MESV) constituye una estrategia metodolégica robusta para estudiar la di-
namica conjunta de variables financieras altamente interdependientes. Se evidencia
que esta integracién permite capturar no solo las dependencias temporales entre las
series, sino también la evolucién estocastica y flexible de sus covarianzas, aspecto
fundamental en contextos donde las correlaciones cambian de forma significativa a
lo largo del tiempo.

Se determina que los modelos VAR-MSV tradicionales presentan una limita-
cién importante al asumir correlaciones constantes. A la luz de la teoria revisada,
se reconoce que esta simplificacién puede generar conclusiones sesgadas cuando se
analizan fenémenos como los tipos de cambio, caracterizados por episodios de con-
tagio, alta volatilidad y variaciones estructurales. En contraste, el modelo MESV,
basado en la transformacién exponencial matricial, confirma ser una alternativa
mas adecuada al garantizar positividad definida y permitir que las correlaciones
evolucionen de manera coherente con los choques econémicos.

Desde el punto de vista metodoldgico, se destaca el papel central de la inferen-
cia bayesiana y del uso de algoritmos MCMC para la estimacién del modelo, dado
que permiten trabajar con variables latentes y estructuras altamente no lineales.
De igual forma, se resalta la utilidad del criterio DIC como herramienta para la
selecciéon del orden 6ptimo del modelo, equilibrando adecuadamente la complejidad
y la capacidad de ajuste.

Se proyecta que el trabajo futuro se orientara en tres direcciones principales.
Primero, se plantea realizar simulaciones que permitan evaluar el comportamiento
del VAR-MESYV bajo distintos escenarios de correlacion dindmica y apalancamiento
cruzado. Segundo, se prevé aplicar el modelo a los tipos de cambio de los paises de
la Alianza del Pacifico, con el fin de identificar patrones de comovimiento, episodios
de contagio y posibles quiebres estructurales antes y después de 2011. Tercero, se
propone incorporar medidas adicionales como la asimetria de Mardia y la curtosis
de Koziol, lo cual permitira caracterizar con mayor precision la distribucién de los
choques y evaluar la presencia de colas pesadas.

En sintesis, se confirma que el modelo VAR-MESV constituye una herramienta
analitica avanzada y adecuada para estudiar fenémenos financieros complejos. La
flexibilidad de su estructura, la capacidad para capturar correlaciones dinamicas y
su fundamento bayesiano lo posicionan como un modelo idéneo para continuar la
investigacion, tanto a nivel teérico como aplicado, dentro del estudio de la dindmica
cambiaria multivariada.
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Regresion Logistica Robusta Basada en M-Estimadores
Fundamentos Teéricos y Aplicaciones Practicas

MAURICIO ARTURO MARTINEZ BACA

RESUMEN. En esta investigacién se propone un modelo de regresién logistica
robusto que emplea M-estimadores para reducir la influencia de valores ati-
picos. La regresién logistica es adecuada para problemas de clasificacién con
variables respuesta binarias, y su distribuciéon presenta colas més pesadas que
permiten manejar observaciones extremas.

El objetivo es obtener estimaciones precisas sin eliminar outliers, superan-
do la sensibilidad de los métodos clasicos como la méxima verosimilitud. Se
consideran dos M-estimadores: el de Huber y el de Bianco—Yohai, con el fin
de mejorar la robustez y capturar la estructura de los datos de manera més
adecuada.

El desempefio del modelo se evaluard mediante simulaciones, incluyendo
escenarios con contaminaciéon de datos, destacando su capacidad para identi-
ficar patrones relevantes sin perder informacién valiosa por la eliminacién de
valores extremos.

RESUMEN. This research proposes a robust logistic regression model using M-
estimators to reduce the influence of outliers. Logistic regression is suitable for
classification problems with binary response variables, and its distribution has
heavier tails, allowing it to handle extreme observations.

The goal is to obtain accurate estimates without removing outliers, over-
coming the sensitivity of classical methods such as maximum likelihood. Two
M-estimators are considered: the Huber estimator and the Bianco—Yohai esti-
mator, aiming to improve robustness and better capture the data structure.

The model’s performance will be evaluated through simulations, including
scenarios with data contamination, highlighting its ability to identify relevant
patterns without losing valuable information due to extreme observations.

1. INTRODUCCION

La Estadistica Robusta surge como una respuesta a las limitaciones de los méto-
dos clasicos de analisis de datos frente a la presencia de valores atipicos o entornos
con datos contaminados. Su propdsito principal es ofrecer herramientas que per-
mitan tratar de manera adecuada las caracteristicas de los datos reales, donde las
observaciones extremas no pueden ser simplemente ignoradas o eliminadas. En la
actualidad, el analisis de datos constituye una herramienta esencial para la toma
de decisiones y el desarrollo de investigaciones en areas tan diversas como la bio-
logia, la medicina, la ingenieria, entre otras, donde la calidad y confiabilidad de la
informacion resultan fundamentales.

Date: Octubre 2025.
Key words and phrases. regresién Logistica, M-estimadores, estimacién paramétrica,outliers,
robustez.
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Dentro de este contexto, los Modelos Lineales Generalizados (MLG) [6] se han
consolidado como una metodologia ampliamente utilizada para modelar relaciones
entre variables en diferentes campos del conocimiento. Sin embargo, su desempeno
puede verse afectado cuando los datos presentan valores atipicos. El objetivo de
este articulo es integrar las caracteristicas de un caso especifico de los MLG con
técnicas robustas, con el fin de desarrollar un modelo que incorpore la fortaleza de
los M-estimadores como una funcién de pérdida como la que propuso Huber (1964)
o los basados en estimadores redescendientes derivados del trabajo de Bianco y
Yohai (1996). Para lograrlo, se propone la construccién de una regresién logistica
robusta, basada en dichos estimadores, que permita obtener inferencias mas estables
y precisas ante la presencia de datos anémalos.

El problema de los datos atipicos (outliers) representa un desafio recurrente en
el andlisis estadistico. Su presencia genera interrogantes sobre su tratamiento: algu-
nos investigadores optan por eliminarlos, otros no logran detectarlos, o simplemente
deciden ignorarlos. No obstante, en los conjuntos de datos reales es comtn encon-
trar observaciones que difieren significativamente del resto. Estas pueden deberse a
errores de medicidn, condiciones experimentales excepcionales o incluso pertenecer
a otra poblacién [8]. En cualquier caso, su existencia puede distorsionar las esti-
maciones y deteriorar el ajuste del modelo, por lo que resulta de vital importancia
contar con procedimientos robustos que garanticen resultados confiables y modelos
capaces de adaptarse adecuadamente a este tipo de datos.

2.  JUSTIFICACION

Como finalidad principal de la Maestria en Matematica con Orientacién en Es-
tadistica de la Universidad Nacional Auténoma de Honduras (UNAH), se establece
que sus egresados deben ser capaces de analizar y resolver problemas presentes en
las ciencias, contribuyendo al desarrollo del pais mediante la aplicaciéon rigurosa
de herramientas estadisticas. Este propésito se alinea con los ejes primordiales de
investigacion de la UNAH, que promueven la generacién de conocimiento ttil para
la toma de decisiones y la mejora de las condiciones de vida de la poblacion.

En este sentido, el presente trabajo se enmarca dentro del eje de investigacién
“Poblacién y condiciones de vida”, especificamente en el tema “Cultura, ciencia
y educacién”, contribuyendo al fortalecimiento de la investigacién cientifica y la
formacion académica en el dmbito estadistico. Asimismo, dentro de las lineas de
investigacion de la Maestria, este estudio se ubica en la linea de Estadistica mul-
tivariada y modelos lineales generalizados [7], al abordar el desarrollo y aplicacién
de técnicas robustas para el andlisis de datos.

El andlisis, detecciéon y tratamiento de valores atipicos constituye una proble-
matica relevante en el contexto nacional, ya que los datos obtenidos en distintas
areas como la ingenieria, la medicina, las ciencias sociales, la biologia, la economia,
entre otras suelen estar expuestos a errores de medicion, registros irregulares o con-
diciones experimentales variables. Desarrollar modelos estadisticos que se adapten
adecuadamente a estas caracteristicas permite mejorar la calidad de las inferencias,
optimizar la toma de decisiones y fortalecer la capacidad de respuesta en proyec-
tos de investigacién aplicada, lo que representa un aporte directo a la soluciéon de
problemas reales del pais.

Los métodos clasicos para la estimaciéon de pardmetros, como el método de mé-
xima, verosimilitud o el método de los momentos, han demostrado ser eficientes
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bajo condiciones ideales. En particular, el método de maxima verosimilitud es asin-
téticamente 6ptimo, consistente y presenta una tasa de convergencia minima. No
obstante, estos métodos suelen fallar cuando los datos presentan observaciones ati-
picas, ya que dichas condiciones rompen los supuestos de los modelos tradicionales.
Ante esta limitacién, los métodos robustos surgen como una alternativa necesaria,
capaces de capturar las verdaderas caracteristicas de los datos y adaptarse ade-
cuadamente a la presencia de valores extremos. La incorporaciéon de estas técnicas
constituye, por tanto, un avance significativo en la busqueda de modelos estadisticos
mas confiables y aplicables a las condiciones reales que enfrenta el pafs.

3. ANTECEDENTES

El estudio de la estadistica robusta surge de la necesidad de métodos estadisticos
que no solo sean efectivos, sino también confiables frente a la presencia de valores
atipicos, los cuales pueden afectar significativamente los resultados al analizar datos.
Desde sus inicios, esta disciplina ha buscado desarrollar herramientas que permitan
obtener inferencias més estables y resistentes a desviaciones de los supuestos del
modelo.

Los primeros desarrollos importantes se centraron en los M-estimadores, in-
troducidos por Hampel (1974) [1], que establecieron la base teérica para esti-
maciones resistentes a valores extremos. Posteriormente, Kiinsch, Stefanski y Ca-
rroll (1989)[2] propusieron los estimadores condicionalmente insesgados de influen-
cia acotada, también basados en M-estimadores y denominados condicionalmente
Fisher-consistentes, aplicables a Modelos Lineales Generalizados (MLG). Estos es-
timadores se obtienen como soluciones de problemas de optimizacién, similares a
los planteados por Hampel.

En los afos siguientes, se desarrollaron nuevas estrategias de estimacién robusta
para MLG. Maronna y Yohai (1993) [3] introdujeron los estimadores de proyeccién,
que fueron aplicados posteriormente por Bergesio y Yohai (2001). Este enfoque in-
cluy6 la implementacién de estimadores basados en la transformacién integral de
probabilidad (MI-estimadores), permitiendo construir modelos de regresién robus-
tos, como la regresion beta, capaces de manejar datos contaminados o con valores
atipicos.

Mas recientemente, Abhik Ghosh [5] implementé métodos de inferencia robusta
mediante estimadores robustos de divergencia minima de potencia de densidad.
Esta metodologia demostré ventajas significativas frente a los métodos clasicos,
como la estimacién por méxima verosimilitud, especialmente en situaciones con
valores atipicos o entornos de contaminaciéon de datos.

Finalmente, Valdora (2014)[6] consolidé los avances de la estadistica robusta
aplicindolos a modelos lineales generalizados, incluyendo regresion de Poisson, re-
gresion exponencial y regresién binomial. Su trabajo integré enfoques como M-
estimadores, cuasiestimadores robustos y estimadores condicionalmente insesgados
de influencia acotada, representando uno de los aportes mas recientes y completos
al desarrollo tedrico de esta disciplina.

En conjunto, estos trabajos reflejan la evolucién de la estadistica robusta, des-
de sus fundamentos tedricos hasta las aplicaciones modernas en modelos lineales
generalizados, mostrando como los métodos robustos han permitido realizar infe-
rencias més confiables frente a la presencia de valores atipicos y entornos de datos
complejos.
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4. MARcO TEORICO

4.1. Distribucién Logistica. Dada una variable aleatoria X que sigue una dis-
tribucion logistica con parametros a y [, su funciéon de distribucién acumulada
(FDA) se define como:

1 T—o -1
(4.1) Flzia,8) = ———= = (1+€7T) )
14+e 77

donde « es el pardmetro de locacion y 3 el parametro de escala.

Funcién de densidad. Derivando la FDA obtenemos la funciéon de densidad de
probabilidad:

T—a

e B

(4.2) flia,f) = ———
B (1 + eiwiTu)

Algunas de las propiedades clave de la distribucion logistica son:

= Media: La media de la distribucién logistica es igual a a.
22

= Varianza: La varianza es © 36 .

= Simetria: La distribucion logistica es simétrica respecto a «.

= Curtosis: La curtosis es 6. = Es més "pesada’que una distribucién normal.

4.2. Estimadores clasicos y sus limitaciones. En esta seccién se estudiaran
las caracteristicas de los estimadores. Inicialmente, se analizaran algunos estimado-
res puntuales, como la media y la desviacién estandar. Posteriormente, se abordaran
métodos més generales de estimacion, como el método de los momentos y el método
de maxima verosimilitud. Se hara énfasis en que estos métodos pueden presentar
debilidades frente a la presencia de valores atipicos o en escenarios con datos con-
taminados.

4.2.1.  Media y desviacion estindar. Definicién: Sea x = (z1, 2, ...,z,) un con-
junto de valores observados. La media muestral z y la desviacién estandar
muestral s se definen como:

(4.3)

51
Il
S|
&

©
I
—

n
(4.4) 5= ni . Z:(a:z —z)2
=1
4.2.2.  Estimacion por método de los momentos. El método de los momentos es
un método de estimacién puntual, al igual que los estimadores mencionados ante-
riormente. Para encontrar los estimadores usando este método se emplean el primer
y el segundo momento.
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(4.5) L2t = E[X]
i=1
IR 2
(4.6) - Z;xi = E[X?]
De la ecuacién (4.5) se obtiene:
(4.7) z = E[X], y dado que E[X]|= «, entonces & =T

Para la estimacién de 3, consideramos la varianza de la variable aleatoria X:

(4.8) Var(X) = E[X?] — (E[X])? = ”2352
De la ecuacién (4.8) se despeja E[X?]:

Finalmente, se obtiene el estimador de f3:

(4.10) B= =S 22—

4.2.3.  Estimacion por mdxima verosimilitud. La funcién de densidad de la distri-
bucién logistica es:

_r—a
e B
(4.11) f@0,8) = —————=
153 (1 +e 7 )
Si tomamos una muestra aleatoria de tamano n, con observaciones x1, za,..., Ty,

que siguen una distribucién logistica, la **funcién de verosimilitud** se expresa
€omo:

n _mi—a

(4.12) Lo i X) = [[ "y
i:15(1+67 B )

El logaritmo de la funcién de verosimilitud es:

(4.13) log L(a, B; X) = —nlog3+z (_xzﬂ— o} —2log (1 _~_e$iﬁa)>
i=1

Para obtener los estimadores de méaxima verosimilitud, se derivan parcialmente
respecto a a 'y B y se igualan a cero:
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i=1 2

(4.15) abg%;*ﬁX)—+-§:< ll—ﬁ;iwl>_o

l+e 58

log L(ax " e T
(4.14) Qﬂi—447 E:( ia>:0
IL+e ™

Notemos que al intentar despejar o y 5 a partir de las ecuaciones (4.14) y (4.15),
se vuelve complejo resolverlas de forma analitica. Por esta razén, se recomienda
utilizar métodos numéricos para estimar los parametros.

En particular, se puede aplicar el método de Newton-Raphson, implementado
con la ayuda del lenguaje de programacién R, un entorno de software libre para
analisis estadistico y visualizacién de datos.

4.3. Estadistica robusta. La estadistica robusta se utiliza para analizar datos
que pueden verse afectados por errores de medicién o por entradas incorrectas, asi
como por situaciones en las que los datos no cumplen con los supuestos clasicos
del andlisis estadistico, como la normalidad. Estos errores se manifiestan a menudo
como observaciones que se encuentran alejadas del resto de los datos, denominadas
valores atipicos o outliers. Sin embargo, estas observaciones pueden ser mediciones
validas que contienen informacién relevante, por lo que resulta necesario emplear
métodos y modelos estadisticos capaces de capturar adecuadamente estas caracte-
risticas sin verse fuertemente afectados por valores extremos. Para medir que tan
lejos esta una observacion utilizando las variables explicadas con valores muy ex-
tremos o inuales, influyen Drasticamente en las estimaciones de los coeficientes,
notando un gran impacto visual en la curva hacia ese punto.

4.4. Entorno de Contaminacién. Segin [10] si se considera la muestra

(4.16) ri=p+u;, 1=1,2,....n

donde los errores uy,usg, ..., u, son variables aleatorias que cumplen las siguien-
tes condiciones:

» Tienen una funcién de distribucién Fj.
= Son independientes.

Si se tienen X = {1, o, ..., z,} como variables independientes e idénticamente
distribuidas (iid) con distribucién

(4.17) F(z) = Fo(z — p),

entonces la distribucién de u; y —u; es la misma, lo que implica que:

(4.18) Fo(z) =1 — Fy(—a).

Una forma de representar datos que se comportan normalmente es asumir que

(4.19) F = D(z;) = N(u,0?),

donde D(z;) denota la distribucién de la variable aleatoria X.
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La idea formal del entorno de contaminacién considera que una proporcién 1 — e
de los datos se comporta segun la distribucién esperada, mientras que una propor-
cién e de los datos se genera mediante un mecanismo desconocido. Esto se puede
representar como:

(4.20) F=(1-¢€¢G+e¢€H,

donde G = N(u, 0?) representa la distribucién principal y H es alguna distribu-
cién desconocida.

Estas caracteristicas se pueden trasladar a cualquier otra distribuciéon G distinta
de la normal.

Definition 4.1. Definicién 3.1. La tasa asintdtica de contaminacion (asymptotic
contamination breakdown point) del estimador fenF , denotada por 5*(@, F), esel
mayor valor e* € (0,1) tal que, para toda & < £*, el valor limite 0, ((1 — &) F + £G)
permanece acotado y alejado de la frontera de © para toda distribucién G.

De manera intuitiva se considera el punto de ruptura como la proporcién de
contaminaciéon que un estimador puede soportar antes de que sus valores sean ex-
tremadamente malos.

4.5. Estimadores M y funciones de pérdida. Consideremos nuevamente el
modelo

(4.21) ri=p+u;, =12, ...,n,

Supongamos que Fy, la funcién de distribucién de u;, tiene una densidad fo = F{.
La densidad conjunta de las observaciones (la funcién de verosimilitud) es

(4.22) L(z1,...,2n; 1) = Hfo(a?i — )
i=1
El estimador de maxima verosimilitud (MLE) de u es el valor fi, que depende de
X1,y...,Tpn, que maximiza L(zq, ..., ZTn;p):
(4.23) b= p(xy,...,¢n) =argmax L(zy,...,%n; )
"

donde “argmax” significa el valor que maximiza la funcion.

Si conociéramos Fj exactamente, el MLE seria “6ptimo” en el sentido de al-
canzar la varianza asintdtica mas baja posible dentro de una clase “razonable” de
estimadores. Pero como solo conocemos Fy aproximadamente, nuestro objetivo seré
encontrar estimadores que sean “casi Optimos” para las siguientes situaciones:

(A) cuando Fj es exactamente normal

(B) cuando Fy es aproximadamente normal (por ejemplo, normal contaminada)

Si fo es positiva en todo punto y dado que el logaritmo es una funcién creciente,
(4.22) se puede reescribir como

4.24 (i = arg min T; —
(4.24) i g;;p( 1)
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donde

(4.25) p=—log fo

Si p es diferenciable, derivando (4.25) con respecto a 1 se obtiene

(4.26) D (@i —p) =0
donde ¢ = p'.

Si 4 es discontinua, las soluciones de la ecuacién (4.26) podrian no existir. En
este caso, interpretaremos la ecuaciéon como que el lado izquierdo cambia de signo
en u. Obsérvese que si fj es simétrica, entonces p es par y, por lo tanto, ¥ es impar.

Un M-estimador introducidos por Hampel (1974) [1] minimiza una funcién de
pérdida p(r;), para i = 1,2, ...,n. donde r; = x; — p son los residuos, luego

n
(4.27) [ = arg min Z p(r;)
-
= La funcién de influencia se relaciona con 9 (r;) = p'(r;).

Se observa en 1 algunas funciones de pérdida consideradas en el estudio de esti-
madores en la teoria de estimadores robustos, luego se muestra en 2 una relaciéon
entre las funciones p y ¥ con propiedades importantes como la familia de funcio-
nes de Huber. Ademds, cuando ¢ en (4.26) no es mondtona se llamarén funciones
redescendientes. Por lo que un M-estimador que utiliza una funcién redescendiente,
se le conoce como M-estimador redescendiente.

x? si|z| <k
4.28 = -
(4.28) Pi(@) {2k|x| K sifz] >k,

con derivada

x si |x| <k,
4.29 =
(4.29) vi(@) {ksgn(x) si |z > k,
donde la funcién signo se define como
1 x>0,
(4.30) sgn(z) =<0 =0,
-1 x<0.

= Huber: lineal para residuos pequenios y constante para grandes.
= Mas adelante se comentard sobre las ventajas de usar una funcién p acotada.
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Funciones de pérdida

25 y R
‘\ 7
. '
\ ;
\ ,
20 B
" ’
| g
15 s ," Tipo
3 % k — Biweight
2 s ,
g . S - = Cuadrética (L2)
o * . =+ Huber
10 . B
*. . Valor absoluto (L1)
. K
~a - “\ ‘o" - -
5 S~ N X . s
~ea. PP
=, i
0 s L NI V-
-5.0 2.5 0.0 25 5.0
Residuo r
F1GUrA 1. Algunas Funciones de pérdida utilizadas
Funcién p de Huber Funcién vyw de Huber
-~ — = _| -k Kk
-k k
2 2 =4
B T T T T T T T T T
-1 -2 o 2 1 -1 -2 o 2
u u

FicUurA 2. Funciones p y 1 de Huber.

Una eleccién popular de funciones p y ¢ es la familia bisquare (también llamada
biweight):

\2]? )
(4.31) p(z) = 1= [1— (;) } , osiz| <k,

1, si|z| > k.

Su derivada viene dada por:

(4.32) plx) =5 ¥(@),
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donde

X

(4.33) W(z) =z [1 - (k)T I(|z| < k),

y I(-) es la funcién indicadora.
= Tukey Biweight: redescendente, ¢(r) — 0 para |r| > c.

Definicién: Salvo que se indique lo contrario, una funcién p denotard una funcién
p que cumple:

1. p(z) es una funcién no decreciente de |z|.
2. p(0) = 0.
3. p(x) es creciente para x > 0 y satisface p(x) < p(c0).
4. Si p estd acotada, también se asume que p(oo) = 1.
Definicién: Una funciéon ¥ denotard una funcién ¢ que es la derivada de una

funcién p, lo cual implica en particular que, 1 es una funcién impar y se cumple
¥(x) > 0 para todo = > 0.

5. METODOS ROBUSTOS EN REGRESION

5.1. Regresion logistica robusta. Segin [10] estamos interesados en una y
binaria (0-1) que puede representar por ejemplo la muerte o la supervivencia de
un paciente después de una cirugia cardiaca. Aqui y = 1 representa muerte y y =
0 representa supervivencia. Queremos predecir este resultado utilizando distintos
regresores, tales como x; = edad, xo = presion diastolica, etc.

Observamos los pares (z,y) donde & = (x1,...,zp)" es el vector de variables
explicativas. Supondremos primero que z es fijo (no aleatorio). Para modelar la
dependencia de y respecto de z, asumimos que P(y = 1) depende de 3’z para
algiin vector desconocido 8 € RP. Como P(y = 1) € [0,1] y 8’ puede tomar
cualquier valor real, hacemos la siguiente suposicién adicional:

(5.1) Py =1) = F(§'z),

donde F' es una funcién de distribucién continua. La funcién F~! se denomina
funcion de enlace. Si en cambio z es aleatorio, se asume que las probabilidades son
condicionales; es decir,

(5.2) Ply=1]x) = F(8').

En el caso comin de un modelo con intercepto, la primera coordenada de cada
x; es uno, y la prediccién puede escribirse como:

(5.3) B'x; = Bo+ xif,

donde z; y 81 son como en (4.6).
Las funciones F' més populares son aquellas correspondientes a la distribucién
logistica

(5.4) F(y) = ;
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(modelo logistico), y a la distribucién normal estandar F(y) = ®(y) (modelo
probit). Para el modelo logistico tenemos:

P(y = 1) ’
(5.5) log (1—P(y—1)) = f'z.

El lado izquierdo es llamado log-odds (logaritmo de la razon de chances), y es
una funcion lineal de z.

Sea ahora (21,91),.. ., (Zn, Ys) una muestra del modelo (5.1), donde 1, ...z,
son fijos. Para simplificar la notaciéon escribimos:

(5.6) pi(B) = F(B'z:).

Entonces, y1, ..., y, son variables aleatorias que toman valores 1 y 0 con proba-
bilidades p;(3) y 1—p;(8), respectivamente, y por tanto su funcién de probabilidad
esta dada por:

(5.7) pyi, B) = Ipi(B)]1 ¥ [L = pa(B)] 17

De esta manera, la log-verosimilitud de la muestra L(8) viene dada por:

n

(5.8) log L(8) = Y, [y logpi(8) + (1 — ) log(1 = p(8))]

i=1
Derivando (5.8) se obtienen las ecuaciones de estimacién del estimador de méxi-
ma verosimilitud (MLE):

i yi_pi(ﬁ) "B 2 s —
(59) 2 B @y =0,

En el caso de z; aleatorios, el modelo condicional (5.2) produce la log-verosimilitud:

n

(510)  logL(B) = Y_ [wslogpi(8) + (1 — i) log(1 = pi(8))| + D log g(ws),
i=1

i=1
donde g(x;) es la densidad de los regresores.
SEPARACION PERFECTA Y NO EXISTENCIA DEL MLE
Consideremos el modelo de regresion logistica donde
pi(B) = Py; = 1| z;) = F(B'z),
y deseamos estimar § por méxima verosimilitud. El problema aparece cuando los

datos son perfectamente separables.
Se dice que hay separacién perfecta si existen v € RP y o € R tales que:

Yri>a siy =1,
Y, <a siy =0.

Esto implica la existencia de un hiperplano que separa completamente a los
casos con y = 1 de los casos con y = 0. Si existe un hiperplano separador, existen
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infinitos, ya que cualquier multiplo escalar de v también separa. Por ello se considera
la secuencia:

BE) = ky, k — 4o00.
Por lo que podemos notar que no podemos encontrar un valor finito para el esti-

mador.

El estimador robusto tipo Huber en regresion logistica se define como sigue

(5.11) di(B) = — [yilogpi(B) + (1 — i) log(1 — pi(B))] ,

Luego, el estimador Huber se obtiene minimizando la suma de la funcién de
Huber aplicada a los deviances:

(5.12) B = argmﬁian(di(ﬂ)),
i=1
con la funcién de Huber p definida en (4.28)

Carroll y Pederson (1993) propusieron una forma de convertir el MLE en un
estimador con influencia acotada, reduciendo el peso de observaciones con alto
leverage.

Leverage de una observacién x:

(5.13) B () = /(% — iy S (% — fin),

con fi,, y X, robustos e invariantes bajo transformaciones afines.
Estimadores robustos:

(5.14) sz [yilog pi(B) + (1 — i) log(1 — ps(B))]-

Pregibon (1981) propuso estimadores M-robustos para el modelo logistico basados
en minimizar:

n

(5.15) M(B) =" p(d*(pi(B), i),

i=1

donde p(u) es una funcién que crece més lentamente que la funcién identidad,
reduciendo asi la influencia de observaciones discordantes.

Bianco y Yohai (1996) observaron que para x; aleatorios estos estimadores no
son Fisher-consistent
Para corregir esto propusieron estimar $ minimizando:

n

(5.16) M@B)=>" [p(d*@i(B),v:)) + a(pi(B))] ,

i=1

donde p(u) es no decreciente y acotada.
La funcién correctiva es:

(5.17) q(u) = v(u) + v(1 - u),
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con

(5.18) v(u) = 2/0 Y(—2logt) dt,
y
(5.19) =0

donde d(u,y) definido por

(5200  d(u,y) = {~2[ylog(u) + (1 — y)log(1 — u)]}"/* sgn(y — u).

Esta expresién es una medida con signo de la discrepancia entre una variable
Bernoulli y y su valor esperado u. Observe que

0, siu =1y,
(5.21) d(u,y) =< —o0, siu=1, y=0,
00, siu=0,y=1.

En el modelo logistico, los valores d(p;(53),y;) se denominan residuos de desvian-
cia, y miden las discrepancias entre las probabilidades ajustadas por los coeficientes
de regresion [ y los valores observados.

6. METODOLOGIA

En este estudio se trabaja en el contexto de regresién logistica robusta con
el objetivo de comparar el desempeno de estimadores clasicos frente a estimadores
robustos. La metodologia seguida se describe a continuacién:

6.1. Ejemplo Ilustrativo. Se considera un conjunto de 20 datos del contenido
de hierro en agua (ppm) para observar el efecto de un solo outlier con relacién a
los estimadores puntuales como ser la media y a la desviacion estandar.

6.2. Simulaciéon de datos. Se generaron datos simulados con un tamafio de
muestra n = 100 utilizando el lenguaje de programaciéon R. Los predictores = se
obtuvieron de una distribuciéon normal estdndar N(0,1). La variable respuesta y se
simulé mediante una distribucién Bernoulli con probabilidad

P(y =1] z) = plogis(2x),

lo que corresponde a un modelo logistico con a =0y = 2.

6.3. Entorno de contaminacion y generacion de outliers. Se introdujeron
valores atipicos para evaluar la robustez de los estimadores, usando un entorno
de contaminaciéon con ¢ = 0,1. Se seleccionaron observaciones especificas del
predictor g = (—3,3) y se duplicaron ciertos valores de y para generar outliers
controlados; en particular, se tomaron dos valores repetidos y tres valores repetidos
de y como casos extremos.
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6.4. Estimacion de modelos. Se ajustaron diferentes modelos de regresion lo-
gistica:
= Modelo clasico: estimacién mediante maxima verosimilitud (GLM estan-
dar).
= Modelo robusto: estimacion utilizando M-estimadores, especificamente:
e Estimador de Huber, basado en la funcién de pérdida propuesta por
Huber (1964).
e Estimador de Bianco—Yohai (BY), especializado en regresién logis-
tica robusta (Bianco & Yohai, 1996).

6.5. Anadlisis comparativo. Para evaluar el desempeno de los modelos, se ge-
neraron graficas y tablas comparativas mostrando las curvas y los valores de
prediccién del modelo clasico y de los modelos robustos. Esto permitié observar
cémo los outliers afectan la estimacién de pardametros y la capacidad de ajuste de
cada modelo, destacando la ventaja de los estimadores robustos en presencia de
valores extremos.

7. RESULTADOS Y ANALISIS

se desea observar el comportamiento que tienen los estimadores puntuales de la
media y la varianza, para ello se analizard un conjunto de datos sin valores atipicos
y con valores atipicos, mediante el siguiente ejemplo;

Ejemplo Ilustrativo: Contenido de hierro en agua (ppm)
Se midi6 el contenido de hierro (en partes por millén) en 20 muestras de agua:

1,8 20 21 22 23 24 25 25
26 26 27 28 28 29 30 3,1
3,1 32 33 150
Observemos que el valor 15,0 se considera un valor atipico (outlier) ya que es
un dato que se encuentra muy alejado de las deméas observaciones. Comparacién
de resultados

Estadistico Sin outlier Con outlier
Media 2,626 3,425
Desviacion estandar 0,42 2,80

la siguiente Figura 3 y muestra el comportamiento de los datos, la media sin
el outlier y con el outlier notando el efecto y la poca robustez de los estimadores
analizados.

Observando la figuras 4 y 5 podemos notar que el modelo GLM clésico con
outliers se desvia bastante de la real la pendiente 31 véase el tabla 1y 2 es mds
baja porque los outliers tiran del ajuste hacia el centro, lo que denota sensibilidad
a los valores atipicos.

En cambio la curva verde es la que mejor se ajusta a la curva real, la pendiente
B1 véase el cuadro 1y 2 es mas cercano al real, esto implica que sigue de cerca la
curva real, aunque parece un poco mas suavizada en los extremos, lo que refleja la
propiedad redescendente del estimador BY que reduce la influencia de los valores
atipicos mas severos.
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Media.png
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Ficura 3. Contenido de hierro en 20 muestras de agua. El punto
rojo indica un valor atipico (15.0 ppm).
TABLA 1. Comparacién de modelos: coeficientes y métricas de ajuste
Modelo Coeficientes AIC Deviance LogLik

Valores reales Bo=0,61=2)
GLM sin outliers (g = 0,311, 51 = 1,993

( _ _ _

( 93.72548  89.72548 -44.86274
GLM con outliers (8y = 0,199, 51 = 0,925

(

(

)

) 126.69593 122.69593 -61.34797
Bo = 0,258, B; = 1,812) 137.48300 133.48300

)

Robusto Huber -
143.73029 139.73029 -69.86514

Robusto BY Bo = 0,299, 5; = 2,081
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Impacto de Outliers en GLM vs Robusto
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F1curA 4. Comparacién de modelos (2 outliers repetidos 2 veces).

Interpretacién Tabla 1 :

= GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 93.73 y
desviancia = 89.73 mas bajos, y LogLik = -44.86 menos negativo.

= GLM con outliers: La presencia de valores extremos aumenta AIC =
126.70 y desviancia = 122.70, y disminuye LogLik = -61.35, indicando peor
ajuste.

= Robusto Huber: Aunque AIC = 137.48 y desviancia = 133.48 son mas altos
y LogLik no esta definido, las estimaciones son estables frente a outliers.

= Robusto BY: Similar al Huber; la robustez sacrifica el ajuste clasico (AIC =
143.73 y LogLik = -69.87 més altos/negativos), pero protege los coeficientes
de la influencia de outliers.

TABLA 2. Comparacién de modelos: coeficientes y métricas de ajuste

Modelo Coeficientes AIC Deviance LogLik

Valores reales (Bo=0,p61=2) - - -
GLM sin outliers  (8p = 0,311, 31 = 1,993)  93.72548  89.72548 -44.86274
GLM con outliers (8y = 0,178, 8; = 0,668) 136.52294  132.52294 -66.26147
Robusto Huber (g = 0,235, 31 = 1,573) 151.76689  147.76689 -
Robusto BY (Bo = 0,299, 81 = 2,081) 168.70511 164.70511 -82.35256
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Impacto de Outliers en GLM vs Robusto
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F1curA 5. Comparacién de modelos (2 outliers repetidos 3 veces).

Interpretacion tabla 2

= GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 93.73
y desviancia = 89.73 mas bajos, y LogLik = -44.86 menos negativo. Los
coeficientes estimados (8 = 0,311, 51 = 1,993) se aproximan bastante a los
valores reales (8 = 0, /1 = 2).

= GLM con outliers: La presencia de valores extremos aumenta AIC =
136.52 y desviancia = 132.52, y disminuye LogLik = -66.26, indicando un
peor ajuste. Los coeficientes (8y = 0,178, 81 = 0,668) se alejan significativa-
mente de los valores reales.

= Robusto Huber: Aunque AIC = 151.77 y desviancia = 147.77 son mas
altos y LogLik no estd definido, las estimaciones (8y = 0,235,5; = 1,573)
muestran estabilidad frente a outliers, acercandose méas a los valores reales
que el GLM con outliers.

= Robusto BY: Similar al Huber; la robustez sacrifica el ajuste clasico (AIC =
168.71 y LogLik = -82.35 mds altos/negativos), pero los coeficientes (5y =
0,299, 81 = 2,081) se acercan mucho a los valores reales, indicando gran
proteccién frente a la influencia de outliers.

Observando la figura 6 podemos notar que el modelo GLM cléasico con outliers se
desvia bastante de la real la pendiente [3; véase el cuadro 77 es mds baja porque
los outliers tiran del ajuste hacia el centro, lo que denota sensibilidad a los valores
atipicos.
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En cambio la roja es la que mejor se ajusta a la curva real, la pendiente (5, véase
el cuadro 1 es mas cercano al real, esto implica que sigue de cerca la curva real
mostrando que Huber es bastante efectivo.

En cambio la curva verde se ajusta bien, aunque ligeramente mas conservadora
en valores extremos. Esto debido a los outliers son menos extremos o la proporcion
de contaminacién es modesta ( € = 0,1) por lo que Huber puede adaptarse mejor,
conservando informacién relevante que BY podria descartar como ruido.

de outliers.png
Impacto de outliers en GLM vs Robusto (¢ = 0.1)
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F1GURA 6. Comparacién de modelos (usando € = 0,1).
Modelo Coeficientes AIC  Deviance LogLik

GLM sin outliers (B = —0,159, B, = 2,471)  75.15171  71.15171 -35.57585
GLM con outliers (8 = —0,054, 3, = 0,36)  137.23405 133.23405 -66.61702
Robusto Huber  (8y = —0,071, 3; = 0,791) 143.31220 139.31220 NA
Robusto BY (Bo = —0,06, 3, = 0,537)  138.35826 134.35826 -67.17913

TaBLA 3. Comparacién de modelos: coeficientes y criterios de ajuste.
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interpretacién tabla 3 :

= GLM sin outliers: Mejor ajuste a los datos limpios, con AIC = 75.15
y desviancia = 71.15 mas bajos, y LogLik = -35.58 menos negativo. Los
coeficientes (89 = —0,159, 81 = 2,471) se aproximan razonablemente a los
valores reales (89 = 0,51 = 2), mostrando que el modelo captura bien la
relaciéon entre x y y cuando no hay contaminacion.

= GLM con outliers: La presencia de outliers eleva AIC = 137.23 y desvian-
cia = 133.23, y reduce LogLik = -66.62, mostrando un ajuste mucho peor
comparado con el modelo sin outliers. Los coeficientes (8y = —0,054, 51 =
0,36) se alejan significativamente de los valores reales, evidenciando la sen-
sibilidad del GLM clasico ante datos atipicos.

= Robusto Huber: Aunque AIC = 143.31 y desviancia = 139.31 son maés
altos y LogLik no estd definido, las estimaciones (5 = —0,071, 51 = 0,791)
permanecen relativamente estables frente a la contaminacién € = 0,1. Esto
muestra que el estimador robusto Huber protege los coeficientes frente a los
outliers, aunque sacrifica algo de ajuste clasico.

= Robusto BY: La robustez sacrifica también el ajuste clasico (AIC = 138.36
y LogLik = -67.18), pero los coeficientes (8y = —0,06, 81 = 0,537) se man-
tienen relativamente protegidos frente a la influencia de los outliers, demos-
trando la eficacia de la aproximaciéon BY en situaciones con contaminacion
moderada.

8. CONCLUSIONES

En el estudio de la regresion logistica los modelos GLM clésicos se ajusta muy
bien cuando tenemos datos sin presencia de valores atipicos, obteniendo valores de
Bo v 1 cercanos a los verdaderos, ademés, de AIC, desviancia y LogLik 6ptimos.
Pero, al considerar datos influenciados por valores atipicos se obtiene un aumento
en el AIC y desviancia, y disminuye LogLik, afectando seriamente los coeficientes
estimados.

Consideranado el andlisis y los resultados de los estimadores robustos (Huber
y BY) en la regresion logistica se observa que los coeficientes estédn cercanos a los
valores reales aun en presencia de outliers. Pero, cabe resaltar en este caso que el
AIC y desviancia son mas altos, en el caso de Huber el loglik es indefinido, por
lo que se sacrifica de cierta manera el ajuste cldsico para cuidar la estimacién de
pardmetros cuando se considera la contaminacion de los datos.

Al introducir un entorno de contaminacién del 10 % el efecto en el modelo clésico
es significativo, pero en los modelos robusto se puede notar una alta resistencia
frente a esta contaminacion. Por tanto un estudio con regresién logistica robusta
evita pérdida de informacién valiosa y malas interpretaciones de los resultados.

9. TRABAJOS FUTUROS

Analizar modelos de regresién logistica robusta con mas variables explicativas,
con el fin de evaluar el comportamiento de los M-estimadores en dimensiones supe-
riores, considerando otros M-estimadores, con diferentes niveles de contaminacién,
diferentes tamanos de muestra y estudio de diferentes criterios de comparacién para
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caso robusto.

Considerar la extensién del enfoque robusto hacia la regresion beta. La incorpo-

racion de estimadores robustos en este contexto podria mejorar el desempeno ante
observaciones atipicas o distribuciones altamente asimétricas.

REFERENCIAS

[1] F. R. Hampel, The Influence Curve and Its Role in Robust Estimation, Journal of the Ame-

rican Statistical Association, 69(346), 383-393, 1974.

[2] H. R. Kiinsch, L. Stefanski, y R. Carroll, Conditional Bias Reduction and Robust M-

Estimation in Generalized Linear Models, Journal of the American Statistical Association,
84(406), 621-632, 1989.

[3] R. A. Maronna y V. J. Yohai, Robust Estimators of Multivariate Location and Scatter for

High Breakdown Point, The Annals of Statistics, 21(1), 283-293, 1993.

[4] L. Bergesio y V. J. Yohai, Projection Estimators for Robust Generalized Linear Models,

Journal of Statistical Planning and Inference, 97(1-2), 57-79, 2001.

[5] A. Ghosh, Robust Inference Using Minimum Density Power Divergence Estimators in Beta

[6]

(10]

Regression, [Revista o conferencia|, Afio.

J. Valdora, Estimadores robustos a transformaciones aplicados a modelos lineales generali-
zados, [Revista o conferencial, 2014.

Universidad Nacional Auténoma de Honduras, Lineas de Investigacion de la Maestria en
Matemdticas, Departamento de Postgrado, 2025.

V. J. Hodge y J. Austin, Robust Statistics for Outlier Detection, Journal of Pattern Recog-
nition Letters, 27(9), 861-874, 2006.

A. M. Bianco, V. J. Yohai, Robust estimation in the logistic regression model, en Robust
Statistics, Data Analysis, and Computer Intensive Methods: In Honor of Peter Huber’s 60th
Birthday, pp. 17-34, Springer New York, 1996.

R. A. Maronna, R. D. Martin, V. J. Yohai, Robust Statistics: Theory and Methods, Wiley
Series in Probability and Statistics, 2006.

MAESTRIA EN MATEMATICA, UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS.
E-mail address: mauricio.martinez@unah.edu.hn

125



MAS ALLA DE TENDENCIAS PARALELAS: UN ENFOQUE
UNIVERSAL PARA ESTIMAR EFECTOS DISTRIBUCIONALES
EN DID

SANCHEZ ANTHONY

RESUMEN. Este trabajo analiza la identificacién causal en disenos Difference-
in-Differences de dos periodos cuando el supuesto de Tendencias Paralelas
puede no ser plausible, especialmente en entornos con resultados no lineales o
discretos, o cuando el interés recae en parametros distribucionales como el efec-
to cuantil en los tratados. En estos casos, las restricciones aditivas implicitas
en el enfoque tradicional pueden fallar y alterar la comparacién contrafactual
entre grupos.

Para superar esta limitacién, se introduce la condicién de Odds Ratio Equi-
Confounding, que describe la confusién en la escala de razén de probabilidades
generalizada y permite una representacién invariante a la escala del resultado
potencial.

ABSTRACT. This paper examines causal identification in two-period Difference-
in-Differences settings when the usual Parallel Trends assumption may not be
credible, particularly in applications where the outcome is nonlinear or dis-
crete, or when interest lies in distributional parameters such as the quantile
treatment effect on the treated. In such contexts, additive and scale-dependent
restrictions underlying conventional DiD can fail, making the standard decom-
position of counterfactual trends invalid.

To address this limitation, the analysis adopts the Odds Ratio Equi-Confounding
condition, which characterizes confounding on the generalized odds-ratio sca-
le and yields a scale-invariant representation of the counterfactual outcome
distribution.

Fecha: Agosto 2025.
Palabras y frases clave. Inferencia causal, Diferencias en diferencias, OREC-UDIiD, Efectos
cuantilisticos (QTT), Confusién no observada.
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1. INTRODUCCION

Los disenos de difference-in-differences (DiD) constituyen una de las metodolo-
glas centrales para la identificacion de efectos causales en entornos observacionales.
Su formulacién clésica, sistematizada en [3], descansa en un esquema 2 x 2: dos
periodos, un grupo tratado y un grupo de comparaciéon. En este marco, la identi-
ficacién del efecto medio del tratamiento sobre los tratados (ATT) se apoya en el
supuesto de tendencias paralelas (PT), segtn el cual, en ausencia de tratamiento,
los resultados potenciales no tratados habrian evolucionado, en promedio, de forma
equivalente entre ambos grupos.

Sin embargo, el supuesto PT presenta limitaciones estructurales. Se formula en la
escala aditiva, lo que puede entrar en tension con restricciones naturales del soporte
del resultado cuando éste es binario, discreto o mixto. Ademas, PT no es invariante
frente a transformaciones monoétonas, de modo que su plausibilidad depende de la
escala en que se mida la variable de interés, aun cuando el parametro causal subya-
cente sea invariante por construccién. Por otra parte, PT no se adapta de manera
natural a parametros no lineales, como efectos sobre la distribucién o sobre cuantiles
de los tratados, restringiendo el alcance inferencial del esquema DiD convencional.

En respuesta a estas limitaciones, la literatura reciente ha propuesto condiciones
alternativas que modelan el sesgo de confusion de forma més flexible. Entre ellas,
el marco Odds Ratio Equi-Confounding (OREC) desarrollado por Park y Tchet-
gen Tchetgen [20] reformula el problema en la escala del odds ratio generalizado,
exigiendo estabilidad temporal de la asociacién entre el tratamiento y el resultado
potencial no tratado. Esta construccion es compatible con resultados continuos, dis-
cretos o mixtos, es invariante a transformaciones mondtonas, permite la presencia
de confusores no observados y admite una teoria completa de eficiencia semipara-
métrica. En este trabajo se desarrolla un marco unificado para la identificacién y
estimacién de efectos causales en disenos DiD bajo el supuesto OREC, se deriva
la funcién de influencia eficiente, se construye un estimador N/2-consistente me-
diante técnicas de cross-fitting y se ilustra, mediante una simulacion controlada, el
comportamiento del enfoque en configuraciones en las que el supuesto de tendencias
paralelas falla de manera sistemaética.

2.  JUSTIFICACION

La investigacion se motiva por la necesidad de disponer de herramientas formales
que permitan evaluar efectos causales cuando las trayectorias de los grupos no son
comparables y cuando la estructura del resultado exige ir més alld de los promedios.
En muchos problemas econémicos y de politica publica, los grupos tratados y de
comparacion presentan diferencias previas al tratamiento, respuestas heterogéneas
y posibles fuentes de confusién no observada. Bajo estas condiciones, los supuestos
aditivos tradicionales dejan de ser una simple conveniencia técnica y se convierten
en una restriccién fuerte sobre el proceso generador de datos, especialmente cuando
el resultado es discreto, acotado o presenta colas de particular interés.

En este contexto, la adopcién del marco Universal Difference-in-Differences (UDiD)

bajo el supuesto Odds Ratio Equi-Confounding (OREC) ofrece una justificacién
metodoldgica precisa: permite caracterizar el contrafactual de los tratados en una
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escala invariante a transformaciones monétonas y compatible con parametros dis-
tribucionales como el efecto cuantil en los tratados (QTT). Este tipo de pardmetros
es especialmente adecuado cuando el impacto de una politica no se refleja de for-
ma uniforme a lo largo de la distribucién, sino que se concentra en determinados
cuantiles o segmentos de la poblaciéon. El uso de funciones de influencia eficientes y
de técnicas de estimacién no y semiparamétricas proporciona un marco en el que la
presencia de confusién no observada puede tratarse explicitamente, sin renunciar a
una teoria asintética clara ni a condiciones de identificacién transparentes.

Desde la perspectiva académica, el trabajo se inscribe de manera natural en la
orientacién en Estadistica de la Maestria en Matemaéticas, al combinar inferencia
causal, modelacién semiparamétrica y andlisis distribucional dentro de un mismo
esquema formal. La construccién del estimador, el estudio de sus propiedades de
eficiencia y la representacion de la confusiéon mediante razones de densidad y razones
de momios generalizadas se alinean con las lineas de investigacién en econometria y
procesos estocasticos, donde la estructura matematica del modelo es tan importante
como su interpretacion aplicada. De este modo, la investigacién contribuye a tender
un puente entre la teoria estadistica moderna y los problemas de identificacién
causal que surgen en el andlisis de politicas econémicas contemporaneas.

3. ANTECEDENTES

Los disenos de DiD tienen una larga trayectoria en la evaluacién de efectos cau-
sales en contextos observacionales, con aplicaciones que se remontan al siglo XIX
y una consolidacién moderna en economia aplicada y ciencias sociales [3]. En su
formulacién candnica, el diseno 2 x 2 considera dos periodos (pre y post) y dos
grupos (tratado y de comparacién), y define el estimador DiD como la diferencia
entre el cambio promedio en el grupo tratado y el cambio promedio en el grupo de
control. Bajo el supuesto de tendencias paralelas (PT), esto es, que en ausencia de
tratamiento el cambio esperado en el resultado potencial no tratado hubiera sido
igual en ambos grupos, dicho estimador coincide con el efecto medio del tratamiento
sobre los tratados (ATT) [16, 1, 24]. Esta simplicidad conceptual explica en buena
medida la enorme difusiéon del enfoque DiD en estudios empiricos recientes.

Con el tiempo, la practica empirica dejé de restringirse al esquema 2 x 2 y evolu-
ciono hacia configuraciones mas complejas: multiples periodos, adopcién escalonada
del tratamiento, tratamientos de intensidad variable, incorporacién de covariables
y heterogeneidad marcada en los efectos [3]. Durante afios, el uso de modelos de
regresion con efectos fijos de unidad y tiempo (especificaciones two-way fized effects,
TWFE) se convirti6 en el estdndar para implementar estos disefos, apoyandose en
la equivalencia entre la regresién lineal y el estimador DiD en el caso basico. Sin
embargo, investigaciones recientes han mostrado que, cuando los efectos del trata-
miento son heterogéneos o la estructura del diseno se aparta del caso simple, los
estimadores TWFE pueden producir combinaciones ponderadas dificiles de inter-
pretar, con pesos negativos y, en casos extremos, estimaciones de signo contrario al
efecto causal subyacente [15, 9, 28]. Estas evidencias han motivado un giro metodo-
l6gico hacia marcos de analisis que “descomponen” cualquier diseno DiD complejo
en bloques elementales 2 x 2 y construyen a partir de ellos los pardmetros de interés
mediante un enfoque de forward-engineering, es decir, fijando primero el parametro
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objetivo y derivando después el estimador adecuado [3].

En paralelo, la propia formulacién del supuesto PT ha sido objeto de revisién
critica. En su versién estandar, PT es un supuesto aditivo sobre los resultados po-
tenciales no tratados: exige la igualdad, entre grupos, de las diferencias esperadas
E (Yl(o) — YO(O) | -), lo cual es natural para resultados continuos sin restricciones de
soporte, pero puede resultar problematico cuando la variable de interés es binaria,
discreta o acotada. En estos casos, las extrapolaciones implicitas de PT pueden
producir contra—ejemplos en los que el “contrafactual aditivo” sale fuera del rango
posible del resultado, o bien resulta incompatible con la evidencia empirica aun
cuando la dindmica verdadera sea razonable desde el punto de vista probabilistico.
Ademads, PT es sensible a transformaciones monétonas del resultado: la plausibi-
lidad del supuesto puede cambiar al pasar, por ejemplo, de niveles a logaritmos,
aunque el objeto causal de interés (como un efecto sobre la distribucién) no depen-
da de la escala particular en que se mida el resultado. Estas limitaciones se vuelven
especialmente agudas cuando el interés se desplaza desde el ATT hacia pardmetros
distribucionales, como los efectos cuantilisticos en los tratados (QTT), para los que
la estructura aditiva de PT no proporciona una ruta natural de identificacién.

Para superar estas restricciones, la literatura ha propuesto multiples extensiones
y alternativas al supuesto PT cldsico. Los modelos de changes-in-changes (CiC)
introducen una estructura basada en transformaciones mondtonas de un factor la-
tente comun, lo que permite identificar efectos distribucionales bajo una hipédtesis
de estabilidad en la distribucién del “shock” subyacente [2]. Otros trabajos han for-
mulado variantes no lineales de PT mediante la aplicaciéon de funciones de enlace
que restablecen la igualdad de tendencias en escalas transformadas, como en el caso
de la nonlinear parallel trends (NPT) [21, 30]. En una direccién distinta, algunos
enfoques han recurrido a condiciones sobre la funcién caracteristica logaritmica del
resultado potencial [5], o bien a suposiciones de estabilidad en la cépula que rela-
ciona el resultado pretratamiento y el cambio del resultado a lo largo del tiempo
[7, 6]. Finalmente, los esquemas de ignorabilidad secuencial extienden ideas de la
evaluacién de tratamientos en series temporales, imponiendo que, condicionando en
resultados y covariables previas, no exista confusién no observada entre tratamiento
y resultado potencial posterior [10].

No obstante, ninguna de estas alternativas constituye una solucién universal al
problema DiD. Los enfoques basados en PT (lineal o no lineal) y en funciones ca-
racteristicas suelen ser sensibles a la escala en que se mide el resultado; los modelos
CiC[18] se apoyan en supuestos de monotonicidad y rank-preservation dificiles de
verificar; las estrategias de copulas requieren condiciones fuertes sobre la estructu-
ra de dependencia; y las formulaciones de ignorabilidad secuencial, si bien generan
marcos potentes, descansan en la ausencia de confusores no observados, lo que ra-
ra vez es inocuo en aplicaciones econémicas. Ademas, muchos de estos desarrollos
carecen de una teoria completa de eficiencia semiparamétrica para parametros dis-
tribucionales, lo que limita su capacidad para guiar el diseno de estimadores que
aprovechen de forma éptima la informacién disponible en la muestra.
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En este escenario surge el enfoque Odds Ratio Equi-Confounding (OREC), pro-
puesto dentro del marco Universal Difference-in-Differences (UDID) [20]. La idea
central consiste en representar el sesgo de confusién —debido a variables no obser-
vadas que afectan simultdneamente el tratamiento y el resultado potencial libre de
tratamiento— mediante funciones de razén de momios generalizadas que vinculan el
tratamiento con el resultado potencial en cada periodo. El supuesto OREC postula
que esa estructura de confusién, expresada en la escala del odds ratio generalizado,
permanece estable entre el periodo pre y el periodo post. Esta formulacion presenta
varias ventajas acumulativas: es aplicable a resultados continuos, discretos o mix-
tos; es invariante a transformaciones mondtonas del resultado; admite la presencia
de confusores no observados siempre que su efecto sea estable en la escala de razén
de momios; y permite derivar funciones de influencia eficientes y estimadores de
raiz-N consistentes sin imponer parametrizaciones rigidas sobre las distribuciones
subyacentes.

El marco UDiD, construido sobre OREC, proporciona asi una sintesis entre la
tradicién DiD y la teoria moderna de inferencia semiparamétrica. Por un lado,
preserva la l6gica contrafactual de los disenios DiD, al centrarse en la identificacién
del resultado potencial no tratado de los grupos expuestos al tratamiento. Por otro,
desplaza el analisis desde la escala aditiva hacia una escala log—odds que resulta
compatible con distintos tipos de variables y con pardmetros distribucionales como
el QTT. Al incorporar funciones de influencia eficientes y técnicas de estimacién
basadas en cross-fitting, el enfoque UDiD ofrece un marco general para estudiar
efectos causales en contextos donde los supuestos clasicos de tendencias paralelas se
muestran fragiles, abriendo la puerta a aplicaciones en las que la heterogeneidad del
efecto y la estructura del resultado son elementos centrales del problema empirico.
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4. DIFERENCIAS EN DIFERENCIAS

Desde mediados del siglo XIX, el diseno de Difference-in-Differences (DiD) ha ocu-
pado un lugar central en la estimacion de efectos causales dentro de las ciencias
sociales. Su esencia radica en comparar la evolucién temporal de un grupo ex-
puesto a un tratamiento con la de otro que permanece sin tratar, de modo que la
inferencia no se base en niveles absolutos sino en cambios relativos. En su forma
mas elemental -con dos periodos y dos grupos- el estimador DiD se define como la
diferencia entre las variaciones promedio del resultado en ambos grupos: la diferen-
cia de dos diferencias.

El fundamento identificador de este esquema descansa en el supuesto de PT: en
ausencia del tratamiento, las trayectorias promedio de ambos grupos habrian sido
paralelas en el tiempo. Bajo esta condicion, la comparacién de diferencias permite
recuperar el ATT.

Con el desarrollo de bases de datos mas amplias y paneles de largo horizon-
te, los disefios DiD se extendieron a configuraciones més complejas. Las unidades
pueden recibir el tratamiento en distintos momentos o intensidades, y las varia-
bles de control se incorporan para mejorar la comparabilidad entre grupos. En este
contexto, la practica empirica consolidé el uso de modelos de regresién lineal con
efectos fijos por unidad y por tiempo -el estimador conocido como Two-Way Fized
Effects (TWFE)- cuya popularidad se sustent6 en que, en el caso 2 x 2, reprodu-
ce exactamente el estimador clasico de DiD calculado a partir de medias muestrales.

Este senalamiento fue desarrollado con particular detalle por Baker, Larcker y
Wang [1]. Mediante un extenso estudio de simulacién, los autores evaldan el desem-
pefio de siete métodos modernos de DiD bajo escenarios con efectos constantes y
heterogéneos, mostrando que muchos de ellos presentan intervalos de confianza que
no cubren el efecto promedio verdadero con la frecuencia nominal y que, ademas,
sufren de baja potencia estadistica.

Ante estas limitaciones, Baker, Callaway, Cunningham, Goodman-Bacon y Sant’ Anna

[3] proponen un marco unificado para los disefios DiD basado en los principios de
la inferencia causal y la heterogeneidad del tratamiento. La propuesta se orienta
hacia un marco unificado que reconcilia la diversidad de aplicaciones empiricas bajo
los principios de la inferencia causal en presencia de heterogeneidad del efecto del
tratamiento. En esencia, incluso los disefios més complejos pueden descomponerse
en una colecciéon de comparaciones elementales 2 x 2: pares de unidades en las que
el tratamiento varia frente a otras en las que no lo hace. Cada uno de estos bloques
constituye un “building block” identificador, cuya validez depende tinicamente del
supuesto de PT local a esa comparacién.

Los autores denominan esta estrategia un enfoque de forward-engineering, pues
parte de la definicién clara de los parametros de interés y, a partir de ellos, cons-
truye los métodos analiticos necesarios para su estimacion. Este modo de proceder
contrasta con la practica habitual de reverse-engineering, que inicia desde especi-
ficaciones de regresién familiares y luego intenta derivar las condiciones bajo las
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cuales podrian tener interpretaciéon causal.

Al adoptar esta perspectiva, se evita la ambigiiedad que genera el uso indiscrimi-
nado de modelos Two-Way Fized Effects, cuya interpretaciéon varia segtin la especi-
ficacién y puede inducir confusién entre cambios en los supuestos de identificaciéon y
alteraciones en el pardmetro objetivo. En cambio, el enfoque de forward-engineering
ofrece una estructura metodolégica en la que diferentes estimadores apuntan a un
mismo parametro, diferenciandose solo por la naturaleza explicita de los supuestos
que los sostienen.

4.1. Disenio 2 x 2. El punto de partida de todo analisis es el disefio canénico
2 x 2, en €l se consideran dos grupos -uno tratado y otro no tratado- y dos periodos
de tiempo —uno previo y otro posterior a la introduccién del tratamiento-.

Este supuesto establece que, en ausencia del tratamiento, ambas poblaciones
habrian experimentado la misma variacién promedio en el tiempo.

4.1.1.  Efectos causales y pardmetros objetivo. Todo anélisis causal debe comen-
zar con la definicién explicita de la cantidad de interés, o parametro objetivo. Esta
definicién se formula naturalmente dentro del marco de resultados potenciales de-
sarrollado por Rubin (1974) y Robins (1986)[23].

Definition 4.1. Sea Y}, el resultado potencial de la unidad i en el periodo ¢ si
permaneciera sin tratamiento en ambos periodos, y th el resultado potencial si no
recibiera tratamiento en el primer periodo pero si en el segundo.

Dado que los resultados potenciales son mutuamente excluyentes, en la practi-
ca solo se observa uno de ellos para cada unidad. El resultado observado puede
expresarse como

(4.1) Yip = (1-D;)Y) + D;Y}!

2 7,t

donde la funcién de decisién

D {1, si la unidad (i) estd expuesta al tratamiento en (t),
i =

0, en caso contrario.

Equivalentemente, Y; ; puede interpretarse como la realizacién efectiva de la fun-
cién:

D’.
Yip = Yi,tl =

VY, siD; =0,
Y., siD;=1,

it
Un supuesto central para la validez del disefio DiD es el de no anticipacién (no
anticipation). Este establece que el tratamiento no afecta los resultados antes de su
implementacion efectiva, es decir,

1 _ o0
Yo=Y,

K3

para todo i. Este supuesto garantiza que los resultados previos reflejan el estado
no tratado y permite definir con precision el momento en que el tratamiento surte
efecto.
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Supuesto 1. NA (No-Anticipation).
v, =Y

[ 2,t)

Vi € D; = 1,;Vt previo al tratamiento.

El supuesto de no anticipacion establece que, para todas las unidades tratadas y
en todos los periodos previos a la intervencion, los resultados potenciales bajo tra-
tamiento y no tratamiento son idénticos.

Definition 4.2. Bajo el marco de resultados potenciales, el efecto causal individual
se define como la diferencia
Yi,lt - Yi(,)ta

que representa el impacto del tratamiento sobre la unidad ¢ en el periodo t.

Este marco permite la existencia de heterogeneidad arbitraria en los efectos del
tratamiento entre unidades y a lo largo del tiempo, es decir, los efectos pueden
diferir para cada ¢ y t. Sin embargo, aprender sobre esta heterogeneidad completa
requiere supuestos adicionales fuertes.

En la préactica, los disenos DiD no buscan identificar efectos individuales, sino
promedios ponderados de ellos. En particular, el pardmetro mas cominmente es-
timado es el efecto promedio del tratamiento sobre los tratados en el tiempo ft,
denotado ATT;:

ATT, =E,[Y}, -Y0 | D;=1]

(4.2) —E,[Y,| Di=1] —E,[YY | D; = 1],

donde E,[] denota un promedio ponderado segiin un esquema de pesos w;.

La expresion 4.2 muestra que ATT; compara el promedio ponderado de los resulta-
dos observados en el periodo posterior entre las unidades tratadas con el promedio
ponderado de los resultados contrafactuales -no observados- que esas mismas uni-
dades habrian tenido de no haber recibido el tratamiento.

Bajo el supuesto de no anticipacién, se cample ademés que ATT; = 0, Vt previo al tratamiento,
lo cual implica que las diferencias entre grupos antes de la intervencion reflejan tni-

camente brechas en los resultados potenciales no tratados.

La inclusién de pesos w; no es un detalle técnico posterior, sino una decisién sus-

tantiva que determina la poblacién de referencia del efecto estimado.

En este sentido, el ATT; ponderado y el no ponderado representan parametros
distintos. Mientras el primero describe el efecto promedio del tratamiento sobre una
poblacién definida por el esquema de pesos -por ejemplo, ponderada por tamano
o relevancia de las unidades-, el segundo se refiere al efecto promedio simple sobre
las unidades tratadas. Asi, las comparaciones entre estimaciones ponderadas y no
ponderadas no reflejan diferencias de eficiencia estadistica, sino variaciones en el
propio parametro objetivo.

Este punto cobra especial importancia en contextos con efectos heterogéneos del
tratamiento, donde adoptar una estructura de ponderacién destinada a mejorar la
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precision en presencia de heterocedasticidad -como en las regresiones de coeficientes
constantes- puede alterar sustancialmente el pardametro identificado. Como advier-
ten Solon, Haider y Wooldridge (2015)[27], cuando los efectos del tratamiento se
correlacionan con los pesos, el parametro ponderado puede diferir notablemente del
no ponderado, lo que implica que ambos deben interpretarse como objetos causales
distintos.

Cuando se reconoce la existencia de heterogeneidad en los impactos del trata-
miento, resulta 1til examinar no solo el efecto promedio, sino también cé6mo dicho
impacto se distribuye a lo largo de los distintos puntos de la distribucién de los
resultados potenciales.

4.2. Identificaciéon de supuestos: Tendencias paralelas. Todo diseno de in-
vestigacién causal se sustenta en un conjunto de supuestos de identificacién que
permiten recuperar los parametros objetivo a partir de datos observados. En el ca-
so del disefio DiD, la identificacién del contrafactual necesario para estimar AT'T;
requiere establecer una relacién entre los resultados observados y los potenciales no
tratados.

En principio, existen multiples supuestos que podrian identificar dicho contra-
factual. Uno de ellos es la independencia en medias, que asumiria

Eu[Y2 | Dy = 1] = B[V, | Di = 0],

lo que implica que, condicionalmente, el tratamiento es asignado de forma aleato-
ria. Bajo este supuesto, la diferencia transversal entre grupos en el periodo posterior
identificaria directamente el ATT;.

Otra posibilidad es la invariancia temporal de los resultados potenciales no tra-
tados, que supone

Ew[Yi?t | D; = 1} = Ew[yi(,)t—l | D; = 1]7

en cuyo caso la variacién temporal dentro del grupo tratado equivaldria al efecto
del tratamiento.

No obstante, ambos supuestos son demasiado restrictivos en la practica. El pri-
mero ignora las diferencias estructurales entre grupos antes del tratamiento, y el
segundo desconoce la posibilidad de cambios temporales comunes que afectan a
todas las unidades.

El diseno DiD se fundamenta, en cambio, en un supuesto mas general: el de ten-
dencias paralelas.

Definition 4.3. El supuesto de PT en el diseno 2 x 2 establece que el cambio
promedio ponderado en los resultados potenciales no tratados es el mismo entre el
grupo tratado y el grupo de comparaciéon. Formalmente,

(4-3) E, D/i(,)t:Z - Yz‘?t:l | D; = 1] =E, [Yi?t=2 - Yz‘(,)t=1 | D; = 0]-

No observado. contrafactual
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Si esta condicion se cumple, es posible construir el resultado contrafactual pro-
medio para las unidades tratadas en el periodo posterior, E,[Y?_, | D; = 1], a
partir de cantidades observables. En particular,

(4.4)
EolYii—z | Di = 1] = Bu[Yihoy | Di = 1]+ (Bu[Yid—z | Di = 0] = Eu[Yi—y | Ds = 0])
Sustituyendo la ecuacién 4.4 en la definiciéon de ATT; y reemplazando los resultados

potenciales no observados mediante los observados segtin 4.1, se obtiene el estimador
DiD en términos de promedios poblacionales:

(4.5)
ATT, = E,[Y;, | Di = 1] = E,[V | Di =1]

— (Bul¥ily | D= 1 -Bu Vs | Dy = 11) = (Eu[YS | Di = 0] = Eu[¥fiy | Di = 0]).

Ey [Yi?t‘Dizl]

Esta expresion constituye el estimador canénico 2 x 2 DiD. La primera diferencia
interna elimina sesgos invariables entre grupos, mientras que la segunda diferencia
—entre las variaciones promedio de los grupos— captura el efecto causal medio del
tratamiento bajo el supuesto de PT.

En la practica, la decisiéon de tratamiento suele estar determinada por actores
econoémicos o institucionales cuyas conductas pueden correlacionarse con las ten-
dencias de los resultados no tratados. De ahi que las aplicaciones empiricas de DiD
deban evaluar explicitamente la plausibilidad de este supuesto, tanto mediante evi-
dencia empirica como a partir de modelos tedricos sobre el proceso de seleccién.

La literatura reciente ha profundizado en la relacién entre los mecanismos de
eleccion del tratamiento y las propiedades temporales de los resultados potenciales.
Si los agentes conocen y actiian sobre los valores futuros de Yi?t, el supuesto de
PT solo podria sostenerse bajo condiciones muy restrictivas, como la constancia
temporal de Y% salvo desplazamientos comunes|1].

En contextos més realistas, PT solo es valido si las variables que determinan la
seleccion al tratamiento dependen de componentes permanentes de los resultados
potenciales —por ejemplo, efectos fijos—, pero no de fluctuaciones transitorias. Si
la seleccién también responde a choques de corto plazo, el supuesto requerird res-
tricciones temporales més fuertes sobre Y; .0 para mantenerse valido.

Otra implicacion relevante es que PT no garantiza invariancia ante transforma-
ciones funcionales del resultado. El supuesto se refiere a promedios de Y% en su
forma especifica, y no necesariamente se preserva bajo transformaciones como lo-
garitmos o tasas. Roth y Sant’Anna [22] demuestran que la insensibilidad funcional
de PT solo se cumple si el supuesto vale tanto entre grupos como a lo largo de
toda la distribucién de Yi?t, lo cual equivale a un escenario de adopcién aleatoria o
estabilidad completa de la distribucién. Cuando tales condiciones no son plausibles,
la validez del supuesto puede depender de la eleccién de escala o forma funcional
del resultado.
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4.3. Estimacion e inferencia. El paso de la expresion poblacional del ATT;
a su forma estimable en la muestra se obtiene reemplazando los valores esperados
por sus anadlogos muestrales ponderados. Asi, el estimador DiD en el disefio 2 x 2
se define como

(4-6) mt = (?‘gzl,t - ?a[]):l,t—l) - (?‘B:o,t - ?u[]):O,t—l)7

donde 7‘1‘;: g+ tepresenta la media ponderada de la variable de resultado Y para
el grupo g € {0,1} en el periodo ¢, dada por

n
> UDi =gt =t}wiYip
—w —
YD:g,t:t’ =" n

Z HD; =g, t; = t'}w;

=1

La ecuacion 4.6 constituye el estimador DiD clasico expresado como la diferencia
de dos diferencias de medias muestrales, cada una calculada dentro de su respectivo
grupo. Es una regla de estimacién directa para el ATT; y la base de la mayoria de
implementaciones empiricas del método.

El mismo resultado expresado en la ecuacién 4.6 puede obtenerse mediante la
estimacién por minimos cuadrados ponderados del pardmetro 32*2 en el siguiente
modelo lineal, definido tnicamente para los dos periodos de observacion:

(4.7) Yie = Bo+S11{D; = 1} + ol {t = t2} + 72 (1{D; = 1} x 1{t = t2}) +ei4,

donde ¢;; representa un término idiosincratico no correlacionado con D;, y los
coeficientes 8 son parametros desconocidos.

En el caso no ponderado (w; = 1), cada una de las cuatro medias muestrales

involucradas en ATT + puede expresarse en funcién de los coeficientes estimados del
modelo 4.6:

Y pota = Bo + Br + B2 + 522,
?D:Ltl = BB + Ev

Yp—ot, = BE + B;

?D:O,n = BB~

Sustituyendo estas expresiones en la definicién del estimador DiD se obtiene
directamente que:

ATT, = |(By+ B + B+ B2) = (Fo+ 70| — | (o + Bo) — ) = B2

Por tanto, el coeficiente de interacciéon (259 del modelo lineal coincide exacta-
mente con el estimador DiD clésico.

136



5. UN MARCO NO PARAMETRICO UNIVERSAL PARA EL ANALISIS DE
DIFERENCIAS EN DIFERENCIAS

Bajo el supuesto de PT, la variacion esperada en el resultado potencial no trata-
do entre ambos periodos es la misma para los grupos tratado y de control, lo cual
permite identificar el efecto promedio del tratamiento sobre los tratados.

Sin embargo, en la préctica, la validez del supuesto PT suele verse comprometi-
da cuando existen diferencias sistematicas en las covariables pretratamiento entre
grupos, lo que introduce sesgos en la evolucion contrafactual de los resultados. Este
problema ha motivado una amplia literatura orientada a relajar o sustituir dicho
supuesto, mediante variantes como el PT condicional en covariables[16, 1, 25] o
transformaciones no lineales del resultado[30, 21]. A pesar de estos avances, tales
enfoques presentan limitaciones: se restringen en su mayoria a resultados continuos
v a efectos aditivos promedio, dependen de la escala de medicién del resultado, pre-
suponen ausencia de confusores no observados o carecen de una teoria de eficiencia
semiparamétrica.

Frente a ello, surge una linea metodoldgica alternativa que replantea la iden-
tificacién causal en términos de asociaciones invariantes entre el tratamiento y
los resultados potenciales no tratados. En particular, el supuesto de Odds Ratio
Equi-Confounding (OREC) introduce una representaciéon del sesgo de confusién en
la escala del odds ratio generalizado, concepto desarrollado por Chen (2007)[8] y
Tchetgen Tchetgen et al. (2010)[29]. Bajo este enfoque, la relacién entre el trata-
miento y el resultado potencial libre de tratamiento puede expresarse mediante una
funciéon de razén de momios, lo que permite “depurar” dicho sesgo sin imponer
restricciones sobre el tipo de variable de resultado ni sobre su transformacién.

El supuesto OREC constituye, por tanto, una generalizacién natural del PT en la
escala del odds ratio. No es estrictamente més fuerte ni mas débil que los supuestos
tradicionales de la literatura DiD, sino una condicién alternativa de identificacién
que debe ser desarrollada y analizada de forma independiente. Su principal virtud
radica en su universalidad: permite estimar efectos causales sobre los tratados en
distintas escalas de interés -incluyendo ATT y QTT-, se aplica a resultados conti-
nuos, discretos o mixtos, es invariante ante transformaciones de escala y admite la
presencia de confusores no observados.

Ademas, la estructura analitica derivada de OREC admite una teoria completa de
eficiencia semiparamétrica, lo que lo posiciona como un marco general o “universal”
para la inferencia causal en contextos DiD[12].

5.1. Configuracion del modelo. Sea N el nimero de unidades observadas,
indexadas por i € {1,..., N}. Para cada unidad, se observa un vector de variables
aleatorias independientes e idénticamente distribuidas (i.i.d.)

0= (X/tv}/t-‘rhAaX%

A € {0, 1} denota la asignacion al tratamiento entre ambos periodos; y X € X C R?
corresponde al conjunto de covariables observadas de dimensién d.
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Denotemos por Y el resultado potencial que se habria observado si, posible-
mente en contrafactual, el tratamiento hubiese sido fijado en A = a en el periodo
t € {0,1}. El pardmetro de interés es el efecto promedio del tratamiento sobre los
tratados AT'T', definido como

T*:E[Y11_Y1O‘A:1]:Tf_7'6ka
donde 7} = E[Y* | A=1].

5.1.1. Densidades condicionales y funcion de propension extendida. Para desarro-
llar el enfoque Universal Difference-in-Differences (UDiD) propuesto por Tchetgen
Tchetgen et al. (2024a)[12], se introducen las siguientes notaciones de densidades
condicionales.

Definition 5.1. Funcién de propensién extendida Sea

ft*(y|a,x), ft*(yax|a)7 ft*(y7a’x)
las funciones de densidad de Y | (A =a, X =2), (Y2, X) | (A=a)y (Y}, A, X),
respectivamente. Asimismo, sea e} (a | y,z) la densidad condicional de A dado
(}/to =y, X = .Z‘)

Para garantizar identificabilidad, se impone la siguiente condicién de soporte
comun:

Supuesto 2. Soporte. La densidad conjunta f;(y,a,x) tiene el mismo soporte
para todos los periodos ¢ € {0,1} y para ambos estados de tratamiento a € {0,1}.
Es decir, existe un conjunto

S= {(ya :L’) : ft*(y’ a, x) € (07 OO)}v
tal que el soporte de las variables observadas es comtn entre los grupos tratados y
de control, tanto en el periodo previo como posterior al tratamiento.

Este supuesto establece que las combinaciones posibles de valores de las variables
de resultado (y) y de las covariables (x) deben tener presencia positiva en todos los
grupos y periodos del anélisis. En otras palabras, ningtin valor de x relevante para
los tratados puede estar completamente ausente en el grupo de control, ni viceversa.

El proposito de esta condicién es garantizar que exista una base comin de compara-
cién entre las unidades tratadas y no tratadas, de modo que el efecto del tratamiento
pueda identificarse a partir de diferencias observables.

Definition 5.2. Sea yr un valor de referencia del resultado tal que (yg,z) € S.

Definimos para cada t € {0,1}:

(5.1)

/B;(ZE) _ e:(l | vaf) _ ft*(y | 1,$) ft*(yR ‘ va) _ e:(l ‘ y,x) e:(o | yR7x)'
e;(0|yr,z)’ fil0,2) fi(yr | Lx)  ei(0fy,z)ef(1]yr, @)

La funcién o (y,x) se conoce como funcién de razén de momios generalizada

(generalized odds ratio function, Chen, 2007; Tchetgen Tchetgen et al., 2010).

o (y, )

Por definicién, o} (y,z) > 0 para todo (y,x) € S, y bajo ausencia de confusién
no observada (exchangeabilidad), se cumple que o (y,x) = 1 en todo su dominio y
of(yr,x) = 1 para todo x.
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Definimos ademaés:

Definition 5.3. Funcién de resultado contrafactual promedio condicional.
pr(a) =E[YY | A=1,X =,

de modo que el componente 7§ del ATT puede escribirse como 75 = E[p*(X) | A =
1].

Finalmente, denotamos por logit(v) = logv/(1 — v) y expit(v) = 1/(1 +e?) las
transformaciones logisticas estdndar. Para un conjunto de indices I C {1,..., N},
sea

P(V) =117V
iel
la media empirica de V sobre dicho subconjunto, y P la media empirica sobre
toda la muestra. Usaremos la notacién asintética habitual: Viy = Op(ry) si Viv /ry
es acotado en probabilidad, Vy = op(ry) si converge a cero en probabilidad, y

Vy 2w para convergencia débil. Finalmente, V' | Z 2w | Z indica igualdad en
distribucién condicional en Z.

5.1.2.  Revision de enfoques en DiD. Antes de introducir el supuesto OREC, con-
viene revisar los supuestos tradicionales que sustentan la identificaciéon causal en
los modelos DiD.

Supuesto 3. Consistencia.
Y, = YtA casi seguramente, para todo t € {0, 1}.

El Supuesto de consistencia establece que el resultado observado coincide con el
resultado potencial correspondiente al tratamiento efectivamente recibido. El Su-
puesto de no anticipacién, por su parte, impone que la intervencién no tiene efectos
causales sobre los resultados antes de su implementacién. En consecuencia, bajo
ambos supuestos se cumple que Yy = Y para todas las unidades, independiente-
mente de su estado de tratamiento.

Bajo el Supuesto 3, el primer componente del pardmetro 7* = E[Y! — Y | A = 1]
E[AY:]

Pr(A:ll) '

Por tanto, la identificacién del ATT requiere inicamente establecer condiciones que

garanticen la identificabilidad del segundo término, 7¢ = E[Y? | A = 1].

se identifica directamente como 7 =

Para ello, consideremos el modelo clésico propuesto por Athey e Imbens (2006)[2]
para el resultado potencial libre de tratamiento Y,?, suprimiendo las covariables
para simplificar la exposicién. Se asume que, para t € {0,1}, el proceso generador
cumple:

(2)
(Modelo DiD): V> = hy(Uy), he(u) = u+bpt, U; =by +baA + e,
3)

. . L D
et satisface ya sea invariancia temporal: €1 | A =¢g | A o,

(4) invariancia respecto al tratamiento: e; | (4 = 0) 2, | (A=1).
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donde ¢; es un término de error no observado que se mantiene invariante en el
tiempo o respecto al tratamiento.

Dicha estructura implica dos posibles restricciones estocdsticas:

En este modelo, U, es una variable no observada y Y;? es una funcién determinis-
ta lineal de ella. El mecanismo de asignacién A condicionado en U; permanece, sin
embargo, sin restricciéon funcional. Ademas, el modelo DiD clésico supone preser-
vacién de rangos (rank preservation), es decir, que no existen interacciones aditivas
entre A y U, en la determinacién de Y.

Mediante un razonamiento algebraico sencillo, puede demostrarse que este mode-
lo implica el conocido supuesto de tendencias paralelas, formulado condicionalmente
en covariables como

(PT) EYY Y)Y |A=1,X]-E[YY-Y)|A=0,X] cs.

Este supuesto establece que, en ausencia del tratamiento, las tendencias pro-
medio de los resultados potenciales son equivalentes entre los grupos tratado y de
control, una vez condicionadas en las covariables observadas.

Bajo los Supuestos 3, 1 y PT, se obtiene de manera directa la expresiéon de identi-
ficacién del ATT:

P =E[EY; | A=1,X)-E(Y; | A=0,X)+E(Yy | A=0,X)-E(Y, | A= l,X)’A

lo cual justifica la construccion tradicional del estimador DiD bajo el supuesto de
tendencias paralelas. Este supuesto puede interpretarse como una restriccién sobre
el grado de sesgo de confusion que afecta la asociacion aditiva entre el tratamiento
A y el resultado potencial no tratado Y;°. En efecto, el supuesto PT puede reescri-
birse de manera equivalente como E[YY | A = 1, X] —E[YY | A = 0,X] — E[Y{ |
A=1,X]-E[Y?|A=0,X].
El lado derecho de la ecuacién seria nulo en ausencia de confusién condicional en
X; por tanto, cualquier desviaciéon de cero cuantifica la magnitud del sesgo de con-
fusién en la escala aditiva, aunque dicho sesgo no pueda observarse directamente.
La igualdad anterior establece que el sesgo aditivo posterior al tratamiento es iden-
tificable a partir del sesgo aditivo previo al mismo.

En este sentido, el supuesto de PT es equivalente a la denominada condicién
de estabilidad del sesgo[16, 19], también conocida como supuesto de equi-confusién
aditiva (additive equi-confounding assumption, [26]). Bajo esta formulacién, el gra-
do de confusion se evaluia en la escala aditiva, es decir, mediante la diferencia entre
las medias condicionales contrafactuales segin el estado observado del tratamiento.

A pesar de su utilidad y simplicidad, el supuesto de PT puede resultar incom-
patible con las restricciones naturales que presentan ciertos tipos de variables de
resultado. En contextos donde los resultados son acotados o discretos -por ejemplo,
binarios, de conteo o proporciones-, la formulacién aditiva del PT puede inducir
valores contrafactuales que exceden el dominio posible del resultado, comprome-
tiendo asi su plausibilidad empirica. Esta incompatibilidad pone de relieve que el
PT, formulado en la escala lineal, puede no ser apropiado en situaciones donde la
naturaleza del resultado impone limites estructurales.
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Una limitacién adicional del PT clésico es su falta de extensibilidad a medidas de
efecto no lineales, como el efecto cuantil del tratamiento sobre los tratados (QTT).
En estos casos, la interpretacion aditiva del sesgo o de las diferencias medias resulta
insuficiente, dado que la relacién causal puede manifestarse de forma no lineal a lo
largo de la distribucién del resultado.

Con el fin de abordar estas limitaciones, Puhani (2012)[21] y Wooldridge (2022)[30]
propusieron el denominado supuesto de tendencias paralelas no lineales (Nonlinear
Parallel Trends, NPT). Este supuesto establece que las expectativas condicionales
transformadas de los resultados potenciales satisfacen el principio de tendencias
paralelas bajo una transformacién monétona L(+), de manera que

(NPT) :L(E[YY | A=1,X]) — L(E[Yy | A= 1, X])
L(E[Y? | A=0,X]) - L(E[Yy | A=0,X]).

Esta formulacion generaliza el supuesto PT al permitir una relaciéon funcional no
lineal entre el resultado y el tratamiento, preservando la estructura comparativa en
una escala transformada por L(-).

Diversos enfoques alternativos han sido desarrollados para identificar efectos del
tratamiento en entornos DiD no lineales. En particular, Athey e Imbens (2006)
introducen el modelo de cambios-en-cambios (Changes-in-Changes, CiC) para re-
sultados continuos, definido para t € {0,1} por

(5) (CiC model) Y = hy(Uy),
(6) U | A2 U, | A

En este modelo, U, representa una variable no observada de distribucién conti-
nua, y h.(+) una transformacioén temporal estrictamente mondtona (o no decreciente
en el caso de resultados discretos). Bajo estas condiciones, la distribucién contra-
factual de Y | (A = 1) puede identificarse de manera no paramétrica a partir de
los datos observados.

Para resultados discretos, la identificacién puntual adicional requiere supuestos
de independencia condicional tales como U; L A | Y; para ¢ € {0,1}, o formula-
ciones equivalentes del tipo Y,? = h;(Uy, X) donde X es un conjunto continuo de
covariables que satisface U; L X | A.

Por su parte, Bonhomme y Sauder (2011) [5] consideran el caso de un resultado
continuo generado por un modelo aditivo, en el cual las funciones caracteristicas
logaritmicas de Y;? | A satisfacen el supuesto de PT en la escala logarftmica. Bajo
esta formulacion, la funcién caracteristica de Y;? | (A = 1) se identifica a partir de
la condicién PT en la escala logaritmica, y la distribuciéon correspondiente puede
recuperarse utilizando la relacién biyectiva entre una distribuciéon y su funcién ca-
racteristica.

A partir de esta idea, Fan y Yu (2012)[13] introducen una versién distributiva

del supuesto DiD, postulando que la variacién en los resultados potenciales libres
de tratamiento a lo largo del tiempo es independiente del estado de tratamiento,
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esto es, Y? — YY L A. Este supuesto, conocido como Distributional difference-in-
differences, se ha utilizado en trabajos posteriores (Callaway et al., 2018; Callaway
y Li, [7]), aunque por si solo resulta insuficiente para identificar la distribucién con-
trafactual de Y,? | (A = 1).

Para lograr dicha identificacién, Callaway et al. (2018) y Callaway y Li (2019) in-
troducen el supuesto de estabilidad de cépulas (copula stability assumption), expre-
sado en el diseno canénico como CYOOHYIO_Y(]Ol A—p = CYOO”YIO_YOO‘ =1, donde Cy yy |z
denota la funcién cépula condicional de las variables aleatorias V' y W dado Z.
Este supuesto establece que la estructura de dependencia entre el resultado previo
al tratamiento y el cambio temporal en el resultado potencial libre de tratamiento

es invariante entre los grupos tratado y no tratado.

Finalmente, Ding y Li (2019)[11] aplican la ignorabilidad secuencial (sequential
ignorability, véase Herndn y Robins, 2020[17]) al contexto DiD candénico como su-
puesto de identificacién. En este caso, se asume la ausencia de confusores no obser-
vados que afecten simultaneamente la relacion entre el resultado potencial posterior
al tratamiento y la variable de tratamiento, una vez controlados el resultado previo
y las covariables observadas, esto es: Y0 1 A | (Yp, X).

Estos desarrollos ilustran la diversidad de estrategias existentes para relajar el
supuesto de PT abordando distintos aspectos del problema de identificacién en
presencia de no linealidad, heterogeneidad o confusién no observada. No obstante,
cada uno de estos enfoques presenta limitaciones especificas -ya sea en términos de
aplicabilidad, eficiencia semiparamétrica o robustez estructural-, lo cual motiva la
introduccién del supuesto Odds Ratio Equi-Confounding (OREC) como un marco
alternativo, general e invariante a la escala de medicién del resultado.

5.2. Modelo generativo. A fin de generalizar los modelos clasicos DiD y CiC,
consideremos la formulacion estructural introducida por Tchetgen Tchetgen. Su pro-
posito es establecer un marco unificado de identificacién causal aplicable a distintos
tipos de resultados y medidas de efecto. Suponiendo, para simplificar la exposicién,
la ausencia de covariables explicitas, se define el siguiente modelo generativo:

(7)  (UDiD model) :Y,? L A | Uy,

5]

(8) Al (Ui =u)=A| (U =u) para todo u,
(9) U | (AzO,ley)gUo | (A=0,Yy=y) paratodo y.

Comparado con los modelos DiD y CiC revisados en la seccién anterior, el modelo
UDiD introduce un conjunto de supuestos conceptualmente distintos y, en general,
menos restrictivos.

En primer lugar, la condicién (7) representa una ignorabilidad latente, en el sen-
tido de que la independencia entre el tratamiento A y el resultado potencial no
tratado Y,? se cumple condicionalmente en una variable latente U;. A diferencia
de los modelos previos -(2) y (6)- donde Y;" se especifica como una funcién deter-
minista de Uy, la relacién entre ambos no se impone estructuralmente en (7). En
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consecuencia, el modelo UDiD relaja de forma sustantiva las restricciones funcio-
nales de los marcos DiD y CiC.

En segundo lugar, la condicién (8) establece la invariancia temporal del mecanis-
mo de tratamiento, es decir, que la distribucién condicional de A dado U; permanece
estable entre periodos. Este supuesto no esté presente en los modelos DiD ni CiC,
y representa una forma de estabilidad del proceso de asignacién del tratamiento a
lo largo del tiempo.

Finalmente, la condicién (9) impone la estabilidad temporal de la distribucién
condicional de U; dado el resultado observado entre las unidades no tratadas. Este
supuesto guarda relacién con la condicién de invariancia temporal del error (3) en
el modelo DiD y con la condicién de estabilidad (6) en el modelo CiC, pero presenta
diferencias conceptuales relevantes: (i) la estabilidad se requiere tnicamente para
el grupo no tratado, y (ii) la condicién involucra el resultado observado Y; en su
argumento condicional.

Por tanto, las condiciones (3), (6) y (9) pueden entenderse como contrapartes
marginales y condicionales de un mismo principio de estabilidad, aunque no son
anidadas entre si —del mismo modo que los supuestos de PT marginal y condicio-
nal tampoco lo son.

Al igual que DiD y CiC, UDiD permite seleccién en variables no observadas,
pues la distribucién de U; puede diferir entre tratados y no tratados. No obstan-
te, el modelo posee propiedades distintivas: (i) al igual que CiC, es invariante ante
transformaciones monétonas del resultado, lo cual no ocurre en DiD; (ii) no impone
estructura aditiva sobre la interaccién A x Uy; (iii) admite resultados continuos, dis-
cretos o mixtos; y (iv) exige invariancia temporal del mecanismo de tratamiento, lo
que proporciona una base de identificacién mas robusta ante cambios en el tiempo.

5.3. Supuesto de Odds Ratio Equi-Confounding (OREC). Aligual que en
los modelos DiD y CiC, el ATT es identificable bajo el modelo UDiD. No obstante,
como sefialan Tchetgen Tchetgen et al. (2024a), una condicién mas débil -implicada
por dicho modelo- es suficiente para garantizar la identificacién.

Supuesto 4. Odds Ratio Equi-Confounding.
ag(y,z) = aj(y,x) para todo (y,z) € S,

donde o (y,x) denota la funcién de razén de momios generalizada (generalized
odds ratio function, Chen, 2007[8]; Tchetgen Tchetgen et al., 2010[29]) que carac-
teriza la asociacién entre el tratamiento A y el resultado potencial no tratado Y.

La funcién o (y, ) proporciona una medida de la magnitud del sesgo de confu-
sién en la escala del odds ratio. En particular, si of(y,z) = 1 para todo (y,x), ello
implica ausencia de asociacién entre A y Y;? condicionalmente en X = z, es decir,
ausencia de confusién dada X. Por tanto, la igualdad of(y, ) = o] (y, x) establece
que el sesgo de confusion -medido en la escala del odds ratio- es estable a lo largo

del tiempo entre los periodos t = 0 y t = 1. De ahi su denominacién como supuesto
de OREC.
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Este supuesto representa una generalizaciéon multiplicativa del principio de esta-
bilidad del sesgo formulado en la escala aditiva bajo el supuesto PT. A diferencia de
este ultimo, el OREC es invariante ante transformaciones mondétonas del resultado,
lo que permite su aplicacién en contextos con variables de tipo discreto, continuo o
mixto. Ademaés, no requiere que la distribucién del resultado pertenezca a la familia
exponencial, lo cual amplia sustancialmente su dominio de validez y lo convierte
en un marco unificado para la correccién del sesgo de confusién en estimaciones
causales sobre los tratados.

Si bien la condicion OREC se deriva naturalmente del modelo estructural UDiD,
es importante destacar que su formulacién puede expresarse directamente en tér-
minos de resultados contrafactuales, sin necesidad de hacer referencia explicita al
factor latente U; que confunde la asociacién entre el tratamiento A y el resultado
potencial no tratado Y.

Para ilustrar este punto, considérese el supuesto de tendencias paralelas no linea-
les (Nonlinear Parallel Trends, NPT), en el cual el resultado es binario y se utiliza
la funcién de enlace logit. Bajo este enfoque, el supuesto NPT equivale a imponer
un modelo para el resultado en el periodo ¢ € {0,1} de la forma

logit {E[Y, | A=a,X =z]} = by(z) +a by(z) + t-ba(z),

donde bg, by y by son funciones de las covariables. Bajo OREC, la asociacién entre
el tratamiento A y los resultados potenciales no tratados Y,? se mantiene constante
en el tiempo, pero sin depender de una funcién de enlace especifica ni de la natu-
raleza del resultado.

Asi, mientras el NPT se formula dentro de un marco paramétrico particular (lo-
gistico o exponencial), el supuesto OREC constituye una condicién semiparamétrica
de estabilidad del sesgo multiplicativo, valida para resultados discretos, continuos
0 mixtos, y que no requiere especificar una relacién funcional entre el resultado y
el tratamiento.

Maés generalmente, el supuesto OREC puede interpretarse como una versién del
supuesto de PT aplicada al mecanismo de exposiciéon extendido en la escala logit.
Tomando logaritmos en ambos lados de la igualdad definida por OREC, se obtiene
la siguiente condicién:

logit (e} (1] y,z)) — logit(ei(1 | yr,z)) = logit(ej(1 | y,z)) — logit(ef(1 | yr, x)),

Y(y,z) € S. En palabras, el cambio en los log-odds asociados con la funcién
de propensién extendida es constante en el tiempo para todo (y,z) € S; es decir,
existe una relacién paralela en los log-odds de dicha funcién entre los periodos.

Pr(A=1|Y" X) te{0,1}.
5.4. Propiedades del enfoque UDiD. Para concluir esta seccién, resumimos

las propiedades esenciales del enfoque desarrollado bajo el supuesto Odds Ratio
Equi-Confounding (OREC).
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El enfoque UDiD, fundamentado en el supuesto OREC, redne un conjunto de pro-
piedades que lo distinguen de los modelos tradicionales en diferencias en diferencias.
En primer lugar, admite sin restricciones resultados continuos, discretos o mixtos,
evitando las limitaciones estructurales presentes en enfoques como CiC o PT en
transformaciones especificas. En segundo lugar, cuando el resultado pertenece a la
familia exponencial, OREC adquiere una interpretaciéon natural en términos de es-
tabilidad temporal de los parametros canénicos.

Una tercera propiedad clave es su invariancia de escala: las condiciones de identi-
ficacion no dependen de transformaciones particulares del resultado, lo que elimina
la necesidad de escoger un dominio funcional “correcto”, un requisito habitual en
modelos basados en PT o NPT. Ademads, el marco permite la presencia de confu-
sores no observados siempre que su influencia sobre el mecanismo de tratamiento
sea estable en la escala del odds ratio.

Desde el punto de vista teérico, UDiD es plenamente no paramétrico y cuenta
con una caracterizacién explicita de la cota de eficiencia semiparamétrica para los
efectos del tratamiento, junto con condiciones suficientes para que el estimador
propuesto la alcance. Por combinar simultdneamente compatibilidad con diferentes
tipos de resultado, invariancia de escala, robustez frente a confusién no observada y
eficiencia semiparamétrica, el supuesto OREC configura un marco verdaderamente
universal para la estimacién de efectos causales en disefios DiD, tal como se resume
en la Tabla 5.4.

Rango resultados  Estimacién  Eficiencia Semiparamétrica Escala Factor de
Supuestos R {0,1} ATT QTT ATT QTT Invariancia confucién
PT v v v X 4 X X v
NPT v v v X X X X v
CiC v 4 v v X X v v
PT con log v X v v X X X v
Copula invarianza v X v v X X X v
Ignorabilidad secuencial v v v v v v v X
OREC v 4 v v v v v v

CUADRO 1. Una comparaciéon de enfoques para entornos de di-
ferencias en diferencias. La marca de verificaciéon 3 indica que se
cumple un criterio bajo la suposicién identificadora y las condicio-
nes adicionales requeridas por trabajos previos. La cruz 7 indica
que un criterio no se cumple.

6. SIMULACION

Con el fin de evaluar el comportamiento en muestras finitas del estimador propuesto
bajo el supuesto OREC, se implement6 un estudio de simulacién Monte Carlo en
dos escenarios: uno con resultado continuo y otro con resultado binario. En ambos
casos se construyé deliberadamente un diseno en el que la ignorabilidad condicional
falla, OREC es valido y el PT es violado, de modo que la comparacién con métodos
estdndar DiD sirve como prueba de estrés para el enfoque planteado.
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Diseno: resultado continuo. En el primer escenario se consideré un resultado
continuo. Para cada unidad se generaron dos covariables observadas X = (X1, X5),
con X1, Xs ~ N(0,1) independientes. El indicador de tratamiento A se simul6 a
partir de un modelo logistico

A~ Ber(expit{OJ(Xl + Xg)})7

de forma que la probabilidad de tratamiento depende de las covariables. Los po-
tenciales resultados se especificaron como

Y9 | (A, X) ~ N(3 +0,01(5 4+ 2X7 +2X2) A+ 0,1(X1 + Xo), 4), Yy =YY,

v | (4, X) ~./\/<3,5+0,5a+0,01(5+2X1—|—2X2)A+0,1(X1—|—X2), 1), ae{0,1}.

La dependencia explicita de Y, con A implica que la ignorabilidad condicional
respecto de X no se cumple. Al mismo tiempo, el sesgo de confusién puede repre-
sentarse mediante una razén de momios generalizada que permanece estable en el
tiempo, de modo que el supuesto OREC es valido con

aj(y,z) = exp {0,01y (54 2x1 + 22) },

mientras que PT no se verifica. En este disefio el efecto medio del tratamiento sobre
los tratados en el periodo post, ATT, es igual a 0,5.

Se consideraron tamaifios muestrales N € {500, 1000, 1500, 2000}. Para cada réplica
se generaron los datos observados (Yp, Y1, A, X) a partir de los potenciales resulta-
dos y del mecanismo de tratamiento, y se estimaron dos cantidades:

= el estimador propuesto bajo OREC, Torrg, construido a partir de la funcién

de influencia eficiente y el esquema de cross-fitting descrito en la Seccién 5.2;

= un estimador DiD estandar basado en PT, 7pr, implementado mediante el

procedimiento de Sant’Anna y Zhao (2020) y Callaway y Sant’Anna (2021).

El desempeno de ambos estimadores se evalué a partir de 1000 réplicas Monte Car-

lo para cada valor de IV, analizando sesgo, error estandar empirico y cobertura de
intervalos de confianza al 95 %.

Diseno: resultado binario. En el segundo escenario se consideré un resultado bi-
nario, manteniendo las mismas distribuciones para las covariables y el tratamiento.
Los potenciales resultados se generaron segin

YY | (A, X) ~ Ber( expit{—O,75—|—(1,5—O,2X1—0,2X2)A+0,1X1—|—0,1X2}), Yi =YY,

Y| (A, X) ~ Ber(expit{0,5+(1,5—0,2X1—072X2)A+0,1X1+071X2}>7 ac{0,1}.

Este disefio mantiene la violacién de ignorabilidad condicional y, al mismo tiempo,
satisface OREC con

o (y,x) = exp {y (1,5 — 0,231 — 0,2x5) },

mientras que PT vuelve a fallar. Aqui las distribuciones de Y} y Y{! coinciden para
las unidades tratadas, de modo que la ATT verdadera es igual a cero. La estimacién
en este caso se realizé utilizando la versién binaria del procedimiento propuesto,
que explota simplificaciones especificas de la escala Bernoulli. Se utilizaron los mis-
mos tamaios muestrales y el mismo niimero de réplicas que en el escenario continuo.
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Resultados principales. En ambos escenarios, el estimador basado en OREC
mostré un sesgo empirico practicamente nulo incluso en muestras moderadas, mien-
tras que el estimador sustentado en PT exhibi6 sesgos sistematicos, coherentes con
la violacién deliberada de dicho supuesto. A medida que N aumenta, las desvia-
ciones estandar de Torgc decrecen de forma compatible con un comportamiento
de raiz-NN, y los intervalos de confianza construidos a partir de la desviacién estan-
dar asintética y de procedimientos de remuestreo tipo multiplier bootstrap alcanzan
coberturas cercanas al nivel nominal del 95 %. Estas evidencias empiricas son con-
sistentes con las propiedades asintéticas establecidas para el estimador eficiente
bajo el supuesto OREC y respaldan su uso en contextos donde las hipdtesis de
tendencias paralelas resultan poco plausibles.

Continuous Y Binary Y
N=500 N=1000 N=1500 N=2000 N=500 N=1000 N=1500 N=2000
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Bias (x10) -0.041 -0.033 -0.010 0.022 Bias (x10) -0.109 -0.066 -0.044 -0.032
ESE (x10) 1447 0.045 0.775 0.645 ESE (x10) 0.382 0.258 0.203 0.167
ASE (x10) 1406 0.947 0.746 0.641 ASE (x10) 0.364 0.244 0.195 0.167
BSE (x10) 1445 0.975 0770 0.661 BSE (x10) 0364 0.244 0.195 0.167
Coverage (ASE) 0951 0.946 0944 0.949 Coverage (ASE) 0930 0931 0.934 0943
Coverage (BSE) 0.960 0.951 0.948 0.959 Coverage (BSE) 0.932 0.932 0.934 0943

FicUrA 1. Resumen gréfico de los resultados de simulacion. Los
paneles izquierdo y derecho muestran los resultados para los casos
con resultado continuo y binario, respectivamente. En la parte su-
perior, cada columna presenta bozxplots del sesgo de los estimadores
Forec ¥ TpT para N € {500, 1000, 1500,2000}. La parte inferior
reporta, para Torgc, €l sesgo medio (Bias), el error estdndar asin-
tético (ASE), el error estandar empirico (ESE), el error estandar
por bootstrap (BSE) y la cobertura empirica de los intervalos de
confianza al 95 % basados en ASE y BSE. Los valores de sesgo y
errores estandar se muestran reescalados por un factor de 10.

7. (CONCLUSIONES

El anélisis desarrollado muestra que los disefios DiD clasicos descansan sobre una
estructura aditiva que se vuelve fragil cuando los efectos del tratamiento son hete-
rogéneos, las trayectorias entre grupos divergen antes o después de la intervencioén,
o el resultado estéd restringido a un soporte acotado. En ese entorno, el supuesto
de tendencias paralelas deja de ser una simplificaciéon técnica y pasa a operar como
una restriccién estructural fuerte: condiciona la escala en la que debe medirse el
resultado, limita el analisis a pardmetros promedio y ofrece pocas garantias cuando
el interés se desplaza hacia efectos distribucionales o cuantilisticos.
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El marco OREC-UDIiD desplaza el foco desde la igualdad de tendencias aditi-
vas hacia la estabilidad temporal de la asociaciéon entre tratamiento y resultado
potencial en la escala del odds ratio generalizado. Esa reparametrizacién permite
trabajar con resultados continuos, discretos o mixtos, mantiene la identificacién
frente a transformaciones monétonas del resultado y admite la presencia de con-
fusién no observada siempre que su efecto actiie de forma estable en dicha escala.
Bajo estas condiciones, parametros como el ATT y el QTT se obtienen a partir
de expresiones no paramétricas en las que el contrafactual de los tratados queda
caracterizado de manera explicita.

Desde la perspectiva estadistica, la derivacién de la funcién de influencia eficien-
te y la construccién de un estimador basado en cross-fitting permiten combinar
estimacién flexible de densidades, razones de densidad y regresiones de resultado
con propiedades asintéticas de raiz—(n). La estructura de sesgo mixto garantiza que
la consistencia y la normalidad asintética se preservan aun cuando no todos los
componentes auxiliares convergen a la misma velocidad, siempre que un subcon-
junto suficiente de ellos lo haga a tasas adecuadas. Las simulaciones con resultados
continuos y binarios confirman este comportamiento: el estimador OREC mantiene
sesgos cercanos a cero, errores estandar acordes con la teoria y coberturas préximas
al nivel nominal precisamente en configuraciones donde los estimadores basados en
PT se desalinean de manera sistemaética.

El marco abre varias extensiones naturales. Por un lado, la posibilidad de identi-
ficar QT'T y otros funcionales distribucionales sugiere trabajar con curvas completas
de efectos —por ejemplo, perfiles de impacto a lo largo de la distribucién del in-
greso, del riesgo o de la productividad— en lugar de concentrarse inicamente en
promedios. Por otro lado, la presencia explicita de factores latentes y de estructuras
de dependencia en el modelo de odds ratio ofrece un punto de encuentro con los
modelos de ecuaciones estructurales (SEM), en los que tratamiento, covariables,
resultados potenciales y confusores no observados pueden representarse de manera
conjunta. Extender OREC-UDID a paneles de miltiples periodos, patrones de tra-
tamiento mas generales y versiones relajadas del supuesto de equi-confusién —por
ejemplo, permitiendo relaciones del tipo a; = ¢(agp)— abre un espacio promete-
dor donde la inferencia causal semiparamétrica y la modelacion estructural pueden
dialogar de forma mas estrecha, manteniendo siempre visibles los supuestos que
sostienen la interpretacién causal de los parametros estimados.
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MODELACION ESPACIAL Y VALIDACION GEOESTADISTICA

DE ESTIMACIONES SATELITALES CHIRPS CON DATOS DE

ESTACIONES TERRESTRES EN CUENCAS HIDROGRAFICAS
DE HONDURAS

KEVIN FERNANDO VASQUEZ ZERONY! ANDRES FARALL?

RESUMEN. La modelacién hidrolégica depende en gran medida de una
representacion precisa de la precipitacién, variable clave en la gestion
del agua, la planificacién territorial y la mitigacién de desastres natu-
rales. En Honduras, su andlisis enfrenta limitaciones debido a la baja
densidad, distribucion irregular y discontinuidad de la red pluviométri-
ca nacional. En este contexto, los datos satelitales CHIRPS (Climate
Hazards Group InfraRed Precipitation with Station data) ofrecen una
alternativa valiosa al proporcionar cobertura casi global desde 1981 con
resolucién espacial de 0.05° (5 km); sin embargo, sus estimaciones pre-
sentan sesgos sisteméticos que requieren correccién local.

Este estudio tiene como objetivo evaluar y corregir el sesgo de las
estimaciones CHIRPS frente a datos de estaciones terrestres y,
posteriormente, modelar su distribucién espacial mediante el uso
de técnicas geoestadisticas avanzadas aplicadas en las principales cuen-
cas hidrograficas de Honduras durante el periodo 1981-2023. Para la
correccion de sesgos se implementan métodos estadisticos reco-
nocidos en la literatura, como el Escalamiento Lineal (Linear
Scaling), la Transformacién de Potencia (Power Transforma-
tion) y el Mapeo de Cuantiles (Quantile Mapping), empleados
en estudios previos de validacién de productos CHIRPS en
Africa y América Central. Posteriormente, se emplean tres mé-
todos geoestadisticos para estimar la precipitacién en puntos
de dificil acceso o en zonas sin pluviémetros: el Kriging Ordina-
rio (OK), que considera la autocorrelacién espacial; el Kriging
Universal (UK), que incorpora covariables topograficas; y el
Co-Kriging, que combina informacién satelital y observaciones
terrestres aprovechando su correlaciéon cruzada. La validacién se
realiza mediante métricas estadisticas como r , R%, NSE, RMSE, MAE
y sesgo, utilizando validaciéon cruzada con datos de estaciones meteoro-
logicas nacionales. Los resultados permitiran generar campos de preci-
pitacién corregidos que mejoran la modelacion hidrolégica, el balance
hidrico y el disefio de infraestructura hidraulica, fortaleciendo la gestién
integrada de los recursos hidricos en Honduras.

Fecha: 19 Agosto 2025.
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ABstrACT. Hydrological modeling strongly depends on an accurate re-
presentation of precipitation, a key variable for water resources mana-
gement, land-use planning, and disaster risk reduction. In Honduras,
precipitation analysis is constrained by the low density, irregular dis-
tribution, and discontinuity of the national rain-gauge network. In this
context, CHIRPS (Climate Hazards Group InfraRed Precipitation with
Station data) provides a valuable near-global record since 1981 at 0.05°
(5 km) spatial resolution; however, its estimates exhibit systematic bia-
ses that require local correction.

This study aims to evaluate and correct the bias of CHIRPS
estimates against ground stations and, subsequently, model
their spatial distribution using advanced geostatistical techniques
across the main Honduran watersheds for 1981-2023. For bias correc-
tion, well-established statistical approaches from the literatu-
re are implemented—Linear Scaling, Power Transformation,
and Quantile Mapping—as used in previous CHIRPS valida-
tion studies in Africa and Central America. Afterwards, three
geostatistical methods are applied to estimate precipitation
in ungauged or hard-to-access areas: Ordinary Kriging (OK),
which models spatial autocorrelation; Universal Kriging (UK),
which incorporates topographic covariates; and Co-Kriging,
which merges satellite estimates with ground observations by
exploiting cross-correlation. Validation is performed using R?, NSE,
RMSE, and bias through cross-validation with national meteorological
stations. The results yield spatially corrected precipitation fields that en-
hance hydrological modeling, water balance estimation, and hydraulic
infrastructure design, strengthening integrated water-resources manage-
ment in Honduras.

Keywords: Geostatistics, Kriging, Co-Kriging, CHIRPS, satellite precipitation,

validation, Honduras.
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1. INTRODUCCION

La precipitacién es un componente central del ciclo hidrolégico por su impacto
directo en la disponibilidad de agua, la agricultura, la planificacién urbana y la
reduccién del riesgo de desastres. En Honduras, la complejidad topografica y la
alta variabilidad climatica exigen informacién espacial y temporalmente consistente;
sin embargo, la red pluviométrica nacional presenta baja densidad, distribuciéon
irregular y series incompletas, lo que limita la caracterizacién confiable de la lluvia.

Ante estas limitaciones, los productos satelitales CHIRPS (Climate Hazards
Group InfraRed Precipitation with Station data) constituyen una fuente conti-
nua desde 1981 (0.05° 5 km), til para complementar la observacion terrestre. No
obstante, sus estimaciones pueden exhibir sesgos sisteméaticos en regiones con topo-
grafia compleja como Honduras, por lo que se requiere su validacién y ajuste antes
de su uso en aplicaciones hidrolégicas e ingenieriles.

En este estudio, la correccién del sesgo entre CHIRPS y las observaciones de

estaciones terrestres se realiza mediante métodos estadisticos reconocidos, tales co-
mo el Escalamiento Lineal (Linear Scaling), la Transformacién de Potencia (Power
Transformation) y el Mapeo de Cuantiles (Quantile Mapping), con el fin de obte-
ner estimaciones de precipitacién ajustadas localmente. Posteriormente, las técnicas
geoestadisticas Kriging Ordinario (OK), Kriging Universal (UK) y Co-Kriging se
emplean para representar la estructura espacial de la precipitacién y estimar va-
lores en zonas sin pluviémetros o de dificil acceso, integrando informacién
satelital y terrestre.
Objetivo general: Validar y evaluar el sesgo de las estimaciones de precipitaciéon
CHIRPS frente a estaciones terrestres, aplicar métodos de correcciéon estadis-
tica y, posteriormente, modelar espacialmente la precipitaciéon corregida
mediante técnicas geoestadisticas (OK, UK y Co-Kriging) en las principales cuen-
cas hidrogréficas de Honduras (1981-2023).

Objetivos especificos:

1. Evaluar el desempeiio del producto CHIRPS frente a los datos de estaciones
terrestres mediante indicadores estadisticos de ajuste y precision, como el co-
eficiente de correlacion de pearson (r), y de determinacién (R?), la eficiencia
de Nash—Sutcliffe (NSE), la raiz del error cuadrético medio (RMSE), (MAE)
y el sesgo medio, utilizando validacién cruzada.

2. Aplicar métodos estadisticos de correccién de sesgo tales como; Escalamien-
to Lineal, Transformaciéon de Potencia y Mapeo de Cuantiles.para ajustar
las estimaciones de precipitacion CHIRPS a las observaciones terrestres y
obtener series corregidas localmente.

3. Modelar la estructura espacial de la precipitacién corregida mediante téc-
nicas geoestadisticas (Kriging Ordinario, Kriging Universal y Co-Kriging)
para estimar valores en zonas sin pluviémetros o de dificil acceso,
evaluando el aporte de covariables topograficas en la interpolacién.

4. Generar mapas continuos de precipitacion corregida y evaluar su desempefio
en la mejora de la modelacién hidrolégica, el balance hidrico y el disefio de
obras hidraulicas a escala de cuenca.

Estas herramientas permiten generar campos de precipitacion corregidos, espa-
cialmente continuos y més representativos de la realidad climética del territorio
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hondurefio. De esta manera, el estudio contribuye a mejorar la calidad y cobertura
espacial de la informacion de lluvia, fortaleciendo la toma de decisiones en gestién
del agua, el disefio de infraestructura hidraulica —como puentes y drenajes— y
los sistemas de alerta temprana ante eventos extremos. Asimismo, proporciona una
herramienta técnica robusta para estimar la precipitacién en zonas sin observacio-
nes directas o de dificil acceso, ampliando la cobertura de datos y optimizando la
planificacién y gestién sostenible de los recursos hidricos del pais.

2.  JUSTIFICACION

En Honduras, los estudios hidrolégicos y de ingenieria civil dependen en gran
medida de la informacién pluviométrica para estimar caudales, disenar drenajes,
puentes y sistemas de control de inundaciones. Sin embargo, la red nacional de
estaciones meteorolégicas presenta limitaciones histéricas en cobertura, manteni-
miento y continuidad de datos, lo que genera vacios espaciales y temporales que
reducen la representatividad espacial y la precision de los modelos hidrolégicos.

La ausencia de registros consistentes en muchas zonas del pais ha obligado a los
profesionales a recurrir a estimaciones generalizadas o valores promedios regionales,
reduciendo la precision de los disenos hidraulicos y aumentando la incertidumbre
en la gestiéon y planificacién de los recursos hidricos. Frente a esta situacién, los pro-
ductos satelitales como CHIRPS (Climate Hazards Group InfraRed Precipitation
with Station data) representan una herramienta valiosa para suplir esta carencia,
pues ofrecen registros continuos desde 1981 con una resolucién espacial de 0.05° (5
km). No obstante, estas fuentes presentan sesgos sisteméaticos que deben corregir-
se mediante métodos estadisticos especializados, tales como el Escalamiento Lineal
(Linear Scaling), la Transformacién de Potencia (Power Transformation) y el Mapeo
de Cuantiles (Quantile Mapping), antes de su aplicacién en el &mbito técnico.

En este contexto, la validacion de los datos CHIRPS y su posterior modelacién
espacial mediante técnicas geoestadisticas constituyen una alternativa metodolégi-
ca robusta para mejorar la calidad y cobertura de la informacién de precipitacién.
A través de métodos como el Kriging Ordinario, Kriging Universal y Co-Kriging,
es posible integrar informacion satelital con observaciones de estaciones terrestres
y realizar interpolaciones en puntos donde no existen pluviémetros o en zonas de
dificil acceso, lo que permite estimar la precipitacion en areas sin mediciones direc-
tas y generar registros histéricos continuos en todo el territorio nacional.

El producto CHIRPS fue desarrollado por el Climate Hazards Group de la Uni-
versity of California, Santa Barbara (UCSB), en colaboracion con el United States
Geological Survey (USGS/EROS), con el propésito de apoyar el sistema de alerta
temprana para sequias del Famine Early Warning Systems Network (FEWS NET)
de USAID. El conjunto de datos fue presentado oficialmente por [Funk et al., 2015]
en la revista Scientific Data, y constituye un registro de precipitacién cuasi-global
(50°S — 50°N), con resolucién de 0,05° y disponibilidad desde 1981.

Este trabajo se enmarca dentro de la linea de investigacion Estadistica Espa-
cial de la orientacién en Estadistica de la Maestria en Matematicas de la UNAH,
ya que utiliza herramientas de anélisis espacial para representar y modelar feno6-
menos geograficos relacionados con la precipitacion. De acuerdo con los ejes de
investigacion institucionales, este estudio se vincula con los temas prioritarios de
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la infraestructura y desarrollo territorial, al generar informacién de soporte
para el disefio de obras hidraulicas y planificacién urbana; y con el eje de cambio
climatico y vulnerabilidad, al mejorar la comprension de la variabilidad espacial
de la lluvia y su impacto sobre la gestion de los recursos hidricos.

Finalmente, el estudio se justifica porque permitira disponer de una base de datos
de precipitaciéon corregida mediante métodos estadisticos y modelada espacialmen-
te con técnicas geoestadisticas, adecuada para su uso en proyectos de modelacién
hidrolégica, balance hidrico y diseno de infraestructura hidraulica. Ademas, aporta-
rad una herramienta estadistica replicable que podré aplicarse en otras regiones del
pais y de Centroamérica, contribuyendo al fortalecimiento de la gestion del agua,
la adaptacién al cambio climatico y la planificacién territorial sustentable.

3. ANTECEDENTES

El uso de datos satelitales para la estimacién y validacién de la precipitacién ha
cobrado gran relevancia en los estudios hidrolégicos de América Latina, especial-
mente en regiones con limitada cobertura de estaciones meteorologicas. Entre los
productos més utilizados se encuentra CHIRPS (Climate Hazards Group InfraRed
Precipitation with Station data), Estos datos han sido aplicados con éxito en la ca-
racterizacion de lluvias, andlisis de sequias y validacién climética en contextos de
topografia compleja. Sin embargo, aunque su uso se ha expandido considerablemen-
te en los ultimos afios, la precision y aplicabilidad de este producto puede variar
segin las condiciones climaticas, fisiograficas y el nivel de densidad de estaciones
disponibles en cada regién. Por ello, resulta fundamental revisar antecedentes cien-
tificos que evaltien su desempeno bajo diferentes contextos geogréficos, climéticos
y metodoldgicos.

El conjunto de datos CHIRPS (Climate Hazards Group InfraRed Precipitation
with Stations) fue desarrollado como una herramienta para el monitoreo de sequias
y cambios ambientales sobre superficie terrestre. Recientes esfuerzos de validacién
en Sudamérica han evaluado su capacidad para reproducir los principales patrones
espaciales y temporales de la precipitaciéon. No obstante, se ha avanzado poco en
determinar su capacidad para evaluar condiciones humedas y secas, particularmente
en areas con registros pluviométricos escasos. En este estudio, se investigd el desem-
pefio de CHIRPS para monitorear eventos htimedos y secos en la regién semiarida
del centro-oeste de Argentina. Mediante el Indice Estandarizado de Precipitacién
(SPI), se compard la base de datos CHIRPS con registros provenientes de 49 esta-
ciones meteorologicas durante el periodo 1987-2016. Los resultados indicaron que
CHIRPS reprodujo adecuadamente la variabilidad temporal del SPI en multiples
escalas (1, 3 y 6 meses), especialmente en la regién dominada por precipitacién de
temporada calida. Sin embargo, se observé una sobrestimacién considerable en la
precipitacién estacional en la regiéon dominada por lluvias de temporada fria, lo que
introduce errores reflejados en el desempeno de CHIRPS en el sector occidental
del drea de estudio. Ademds, aunque CHIRPS reprodujo con precisién la frecuen-
cia de clases hiimedas y secas en escalas superiores a un mes, el sesgo hiimedo
(wet bias) produjo una subestimacién de la frecuencia de valores cero, afectando
la clasificacién de condiciones extremas en eventos secos (1998) y hiimedos (2016).
Los autores concluyeron que CHIRPS es una herramienta adecuada para la eva-
luaciéon de condiciones secas y hiimedas en escalas superiores a un mes, pudiendo
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apoyar procesos de toma de decisiones en agencias hidrometeorolégicas regionales
([Rivera et al., 2019]).

De manera similar El estudio [Al-Shamayleh et al., 2024]) evalu6 la capacidad
del producto CHIRPS con resolucién espacial de 0.05° para estimar precipitacién
mensual y anual en la cuenca Wala, Jordania, durante el periodo 1987-2017 me-
diante una comparacién punto-a-pixel y utilizando once indices extremos recomen-
dados por el ETCCDI. Los resultados mostraron una correlacién moderada en la
estimacién mensual (r = 0.50-0.73), pero un bajo desempefio en la deteccién de
eventos extremos, con tendencia a sobreestimar valores bajos y subestimar valores
altos de precipitacion, especialmente en anos hidrometeorolégicos extremos. Ade-
mas, el producto presenté subestimacién en indicadores CDD, CWD, R10, R20 y
R30, mientras que sobreestimé R95p, R99p y Rxlday, lo cual evidencia limitacio-
nes en la representacion de extremos pluviométricos. La prueba de Wilcoxon indicd
falta de equivalencia estadistica con los registros observados, concluyendo que es
necesaria una correccion de sesgo antes de emplear CHIRPS en analisis extremos o
aplicaciones hidrologicas.

En Honduras, ([Pichardo, 2024]) desarrollé un estudio pionero titulado “Valida-
cion de precipitacion en la subcuenca del Lago de Yojoa: datos satelitales versus
observados”, donde comparé los productos CHIRPS v2.0 y CMORPH con ob-
servaciones de diez estaciones hidroclimatologicas de la Empresa Nacional de Ener-
gia Eléctrica (ENEE). El estudio reporté un bajo ajuste en la escala diaria (R?
entre 0.02 y 0.07), pero un desempeio considerablemente mejor a nivel mensual
(R? entre 0.6 y 0.85), destacando una fuerte correlacién (( p > 0,85 )) y eficiencia
de Nash-Sutcliffe (NSE>0.70) en estaciones como El Mochito y Santa Elena. Para
la correccién de sesgos, se aplicaron los métodos de Escalamiento Lineal (LS) 'y
Transformacion de Potencias (PT), logrando ajustar los datos de CHIRPS a las
observaciones en tierra y realizar relleno de series historicas de precipitaciéon entre
1981-2023. Aunque el estudio demostro la validez del uso de CHIRPS a escala men-
sual, no incorporé técnicas geoestadisticas ni analisis espacial continuo, limitadndose
al a&mbito local de la subcuenca del Lago de Yojoa

([Bollat Flores, 2023]) desarroll6 en Guatemala un andlisis comparativo de datos
CHIRPS con registros pluviométricos locales en el departamento de Chiquimula,
aplicando interpolacién espacial mediante Kriging Ordinario. Su investiga-
cién logré una correspondencia espacial del 80 % y una correlacién positiva de 0.84,
demostrando la eficacia del Kriging para ajustar las diferencias entre estimaciones
satelitales y observaciones de superficie en regiones montanosas del corredor seco
centroamericano. Este enfoque permitié generar mapas continuos de precipitacién
corregida y evidencié el potencial de las técnicas geoestadisticas para mejorar la
precision de los productos satelitales.

De Manera complementaria En Ghana ([Atiah et al., 2023]), donde la red de
pluviémetros presenta un continuo deterioro, se evalud el desempeno del produc-
to satelital CHIRPS-v2 mediante un proceso de correcciéon de sesgo utilizando el
enfoque Bias Correction and Spatial Disaggregation (BCSD). El estudio analizé el
impacto de dicha correccion sobre la identificacion de la estacionalidad y de los
indices extremos de precipitacion. Los resultados mostraron que, tras la aplicacién
del método BCSD, los patrones estacionales y anuales fueron mejor representados
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y se obtuvo una mayor correspondencia con los datos de estaciones, especialmente
en las fechas de inicio y fin de la temporada lluviosa. El estudio concluye que el
enfoque BCSD mejora tanto la estimacion de la precipitacién como la identifica-
cién de indices de estacionalidad, sugiriendo su aplicacién en la correccién de otros
productos satelitales utilizando registros histéricos de largo plazo.

Los antecedentes revisados conforman una base conceptual y metodoldgica rele-
vante para el presente estudio; sin embargo, también evidencian brechas investiga-
tivas tanto en la escala de aplicacién como en la combinacién metodoldgica. A nivel
nacional, Pichardo (2024) valid6 los datos CHIRPS tnicamente a escala local sin
incorporar modelacién espacial, mientras que Bollat Flores (2023) aplicé Kriging en
Guatemala para la interpolacién de precipitacién sin considerar procesos de correc-
cién estadistica previos. De manera complementaria, estudios internacionales han
demostrado que CHIRPS requiere una correcciéon de sesgo antes de su aplicacién
hidrolégica o espacial (Rivera et al., 2019; Atiah et al., 2023; Al-Shamayleh et al.,
2024), particularmente para la representacién de eventos extremos y estacionalidad.

En funcién de estas brechas, la presente investigaciéon propone una ampliacién
metodologica a escala nacional en Honduras, integrando dos etapas complementa-
rias: (1) correccién estadistica del sesgo mediante Linear Scaling, Power Transfor-
mation y Quantile Mapping; y (2) modelacién espacial mediante Kriging Ordinario,
Kriging Universal y Co-Kriging, combinando datos satelitales CHIRPS con obser-
vaciones de estaciones terrestres. En el caso del Co-Kriging, se incorporardn co-
variables fisico-ambientales espacialmente continuas tales como topografia (DEM),
temperatura del aire, velocidad/direccién del viento, distancia al litoral u otras
variables climdticas relacionadas, siempre que presenten correlacién significativa
con la precipitacién y mejoren la capacidad predictiva del modelo. Este enfoque
permitira obtener estimaciones corregidas localmente y generar una representacién
espacial continua en zonas sin cobertura instrumental, fortaleciendo la disponibili-
dad de informacién pluviométrica para aplicaciones hidrologicas, gestién de riesgos
y diseno de infraestructura hidrdulica en Honduras.

4. MARCO TEORICO

4.1. Fuentes de informacion y Datos utilizados.

4.1.1. Area de estudio. El estudio se desarrollard en las principales cuencas hi-
drogréaficas de Honduras, las cuales presentan variaciones espaciales y temporales
significativas en la precipitacién debido a caracteristicas topograficas, climaticas y
oceanicas. La presencia de cadenas montanosas, valles intermontanos, planicies cos-
teras y la influencia tanto del océano Pacifico como del mar Caribe genera gradientes
pluviométricos marcados, lo que requiere integrar datos satelitales y observaciones
terrestres mediante técnicas estadisticas y espaciales.

4.1.2.  Datos satelitales (CHIRPS-v2). Se utilizard el producto satelital Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS-v2), el cual inte-
gra estimaciones infrarrojas con informacién de estaciones meteorolégicas mediante
un proceso de interpolacién inteligente, con resolucién espacial de 0,05° (aproxima-
damente 5 km) y cobertura temporal desde 1981 hasta la actualidad, lo que permite
construir un registro histérico de alta continuidad espacial.
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El producto CHIRPS fue desarrollado por el Climate Hazards Group de la Uni-
versity of California, Santa Barbara (UCSB) en colaboracién con el United States
Geological Survey (USGS/EROS), con el propédsito de apoyar el sistema de alerta
temprana ante sequias del Famine Farly Warning Systems Network (FEWS NET)
de USAID. El conjunto de datos fue presentado oficialmente por ([Funk et al., 2015])
en la revista Scientific Data, y constituye un registro de precipitacién cuasi-global
(50°S — 50°N), con una resolucién de 0,05° y disponibilidad desde 1981, lo cual lo
convierte en una fuente adecuada para estudios hidroldgicos en regiones con limi-
tada cobertura instrumental.

4.1.3.  Datos de estaciones meteorologicas terrestres. Para la comparacion, valida-
cién y correccion del sesgo se utilizaran registros provenientes de estaciones meteo-
rologicas ubicadas dentro de las cuencas de estudio. En Honduras, la disponibilidad
y densidad espacial de estaciones es limitada, especialmente en zonas rurales, mon-
tanosas y de dificil acceso. Ademas, una parte considerable de las estaciones sélo
cuentan con registros mensuales y presentan lagunas temporales, periodos de inac-
tividad y series historicas incompletas, lo cual dificulta su uso directo en andlisis
hidrolégicos detallados. Por esta razdn, se vuelve necesario complementar estas me-
diciones con productos satelitales y aplicar técnicas de correccion estadistica antes
de realizar la modelacion espacial.

4.1.4.  Covariables ambientales. Con el propésito de mejorar la representaciéon es-
pacial de la precipitaciéon, se evaluara la incorporacién de covariables fisico-ambientales
en el modelo de Co-Kriging, siempre que estas demuestren correlaciéon estadistica
significativa y coherencia fisico-climéatica. Entre las variables candidatas se consi-
deran:

= Elevacién y pendiente (DEM),

= Temperatura del aire superficial,

= Distancia al litoral,

Velocidad y direccién del viento,

» Indices de vegetaciéon o humedad del suelo.

La decisién de integrar cada covariable se basara en anélisis estadistico preliminar
y revision de literatura con el fin de optimizar la capacidad predictiva y estabilidad
del modelo.

4.2. Metodologia. La metodologia propuesta se estructura en cuatro fases prin-
cipales: (i) preparacién y depuracién de los datos disponibles, (ii) comparacién es-
tadistica punto—pixel entre observaciones terrestres y estimaciones satelitales, (iii)
aplicacion de técnicas estadisticas de correccién de sesgo reportadas en la litera-
tura cientifica, y (iv) modelacién espacial mediante métodos geoestadisticos. El
propoésito de este enfoque metodoldgico es integrar informacién satelital y regis-
tros provenientes de estaciones meteorologicas, con el fin de generar estimaciones
continuas y espacialmente coherentes de precipitaciéon corregida en las principales
cuencas hidrograficas de Honduras. Cabe senalar que estas etapas representan un
esquema metodologico planificado para su implementacién en el desarrollo de la
presente investigacion.
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4.2.1.  Fase I: Preparacion y depuracion de datos. En esta etapa se realiz6 la reco-
pilacion, estandarizacion y verificacién de calidad de los datos satelitales y terres-
tres. Las actividades consideradas se detallan a continuacién:

1. Descarga y organizaciéon de la serie satelital CHIRPS-v2 para el periodo
definido en el estudio.

2. Obtencién de los registros de precipitacién provenientes de estaciones me-
teoroldgicas ubicadas dentro de las cuencas seleccionadas.

3. Aplicacién de control de calidad de datos mediante verificacién de valores
extremos, duplicados, discontinuidades temporales y consistencia interna.

4. Ajuste de la resolucién temporal entre ambas fuentes (mensual o diaria segin
disponibilidad).

5. Unificacién de formatos, unidades y estructuras de archivo para su trata-
miento estadistico.

4.2.2.  Fase II: Comparacion estadistica punto-pizel. En la fase de evaluaciéon se
propone utilizar indicadores estadisticos para cuantificar el ajuste entre la precipi-
tacién estimada por CHIRPS-v2 y las observaciones en estaciones meteorolégicas.
En particular, se empleardn el Sesgo (BIAS), el Error Absoluto Medio (MAE), la
Raiz del Error Cuadréatico Medio (RMSE), el coeficiente de correlacién de Pearson
(r) y la eficiencia de Nash—Sutcliffe (NSE). Las expresiones propuestas se describen
a continuacién.

Sesgo medio (BIAS)
Sea {z;}7_; la secuencia de valores observados y sea {y;}}_; la secuencia corres-
pondiente de valores estimados. El sesgo medio (BIAS) se define como

(4.1) BIAS = %zn:(yz — ;).

i=1

Un valor positivo de BIAS indica una sobreestimacién sistemética de los valores
estimados respecto a los observados, mientras que un valor negativo indica una sub-
estimacién sistematica. En el caso ideal, un valor de BIAS cercano a cero sugiere
ausencia de sesgo promedio.

Error Absoluto Medio (MAE)
Sea {z;}"_, la secuencia de valores observados y sea {y;}!_; la secuencia corres-
pondiente de valores estimados. El error absoluto medio (MAE) se define como

1 n
4.2 MAE = — s — .
(42) P

El MAE mide la magnitud promedio del error entre las observaciones y las esti-
maciones, sin considerar su signo.

Raiz del Error Cuadratico Medio (RMSE)
Sea {z;}1, la secuencia de valores observados y sea {y;}!; la secuencia co-
rrespondiente de valores estimados. La raéz del error cuadrdtico medio (RMSE) se
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define como

(4.3)

El RMSE penaliza con mayor peso las discrepancias grandes entre estimaciones
y observaciones y constituye una medida estandar de la precision de un modelo.

Interpretaciéon:

= Un RMSE cercano a cero indica un buen ajuste entre los valores estimados
y observados.
= Un RMSE elevado sefiala una mayor discrepancia entre ambos conjuntos
de valores.
= El RMSE conserva las mismas unidades que la variable analizada.
Coeficiente de correlaciéon de Pearson (r)
Sea {z;}I_; la secuencia de valores observados y sea {y;}?_; la secuencia corres-
pondiente de valores estimados. Denote por

ol I
z:ﬁ;xi, y:ﬁ;yi

las medias respectivas.
El coeficiente de correlacion lineal de Pearson se define como

 Shmepwon
Vo~ )P (@i - )2

Este coeficiente mide el grado de asociacién lineal entre ambas series.

(4.4) r

Interpretacion:

= 7 cercano a 1 indica una fuerte relacién lineal positiva.
= 7 cercano a —1 indica una fuerte relacion lineal negativa.
= r cercano a 0 sugiere ausencia de relacién lineal.

Eficiencia de Nash—Sutcliffe (NSE)
Sea {z;}7_; la secuencia de valores observados y sea {y;}}_; la secuencia corres-
pondiente de valores estimados. Denote por

la media de los valores observados. La eficiencia de Nash—Sutcliffe se define como
Z?:l(fﬁz' —4i)°
Dlim (@i — 1)?
El NSE evalta la capacidad de un modelo para reproducir los valores observa-

dos, comparandolo con el desempeno obtenido al usar la media observada como
estimador.

(4.5) NSE =1 —

Interpretacion:

= Valores de NSE cercanos a 1 indican un desempefio alto.
= Valores de NSE cercanos a 0 sugieren que el modelo no mejora respecto a
usar la media de los datos observados.
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= Valores de NSE negativos indican que el modelo tiene un desempefio peor
que la media observada.

4.2.8.  Fase III: Correccion estadistica del sesgo. Con el propésito de ajustar la
serie satelital a las condiciones reales medidas por estaciones terrenas, se aplicaran
tres métodos de correcciéon estadistica: Linear Scaling (LS), Power Transformation
(PT)y Quantile Mapping (QM). A continuacién, se describen las expresiones ma-
tematicas de cada técnica.

Método Linear Scaling (LS). Sea {x(t)} la serie de valores observados y sea {y(t)}
la serie correspondiente de valores estimados para cada tiempo t. Denote por

1< 1 &
f:f;x(t), @zf;y(t)

las medias respectivas. El método Linear Scaling corrige cada valor estimado me-
diante el factor

(46) ycorr(t) = y(t)

< 81

Este método aplica un factor multiplicativo constante basado en la razén entre la
media observada y la media estimada. Es adecuado cuando el sesgo es proporcional
y se manifiesta principalmente en la magnitud promedio de la serie.

Interpretaciéon de las variables:

= Yeorr(t): valor corregido en el tiempo t.
= y(t): valor estimado en el tiempo t.

= 7: media de la serie observada.

= y: media de la serie estimada.

(b) Método Power Transformation (PT).
(4.7) Peore(t) = (Paag ()

Este procedimiento ajusta la distribucion mediante una transformacién potencial
controlada por el parametro A, modificando la asimetria y mejorando la represen-
tacion de valores extremos.

Donde:
Peorr(t): valor corregido de precipitacién en el tiempo ¢
Pyt (t): valor satelital en el tiempo ¢
A: parametro de transformaciéon obtenido mediante calibraciéon estadistica

(¢) Método Quantile Mapping (QM).
(4.8) Peore(t) = Fp (Fuat (Paat(t)))

Este método realiza la correccién mediante el emparejamiento de cuantiles entre
las distribuciones satelital y observada, logrando ajustar no sélo la media y la
varianza, sino la forma completa de la distribucién.
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Donde:
Peor(t): valor corregido para el tiempo ¢
Pyt (t): valor satelital estimado para el tiempo ¢
Fiot(+): funcion de distribucién acumulada (CDF) del satélite
):

F3;1(-): funcién inversa de la CDF de las observaciones

4.2.4. Fase IV: Modelacion espacial mediante geoestadistica. Posteriormente, se
aplicaran métodos geoestadisticos con el fin de estimar la distribucién espacial con-
tinua de la precipitacion corregida. El procedimiento comenzé con el cilculo del
semivariograma experimental y posteriormente se utilizaron los métodos de Kri-
ging Ordinario (OK), Kriging Universal (UK) y Co-Kriging (CoK).

A continuacion se describen algunos Fundamentos teéricos de la dependencia

espacial:
En diversos fenémenos naturales, las variables de interés se observan a través del
tiempo, del espacio o en una combinacién espacio-temporal. Esta caracteristica
implica que su analisis no puede abordarse inicamente mediante los métodos tradi-
cionales de la estadistica clasica, pues los supuestos que dichos métodos requieren
especialmente el de independencia entre observaciones rara vez se cumplen en estos
casos.

En el ambito espacial, este comportamiento ha sido ampliamente documentado.
La denominada primera ley de la Geografia, atribuida a Waldo Tobler ([Tobler, 1970])
, establece que “todo esta relacionado con todo lo demas, pero las cosas cercanas
estdn mas relacionadas que las cosas distantes”. Esta afirmacién resume el princi-
pio fundamental de la autocorrelacién espacial, segtin el cual las observaciones
geograficamente proximas tienden a presentar valores similares. En consecuencia,
los datos espaciales no son independientes: cada medicién estd influenciada por su
entorno, y en procesos multivariados puede existir ademéas correlacién cruzada
entre distintas variables medidas en un mismo espacio geografico.

Por ello, el andlisis estadistico de fenémenos espaciales requiere métodos que
incorporen explicitamente esta estructura de dependencia. La estadistica espacial
y espacio-temporal constituye el marco tedrico que permite describir, modelar y
predecir procesos que varian en el territorio, proporcionando herramientas para:

= estimar valores en lugares sin observaciones directas,

= caracterizar cémo cambia la relacién entre puntos conforme aumenta la dis-
tancia,

= extender los modelos de regresién al caso en que las observaciones estan
correlacionadas espacialmente,

= analizar patrones de ocurrencia y variaciéon de fenémenos geograficos.

Este enfoque es indispensable en estudios hidrolégicos y climéticos, donde varia-
bles como la precipitacion presentan dependencia espacial marcada y estructuras de
correlacién complejas. En este trabajo, dicha dependencia constituye un elemento
central, ya que la construccion de campos continuos y coherentes de precipitacién
corregida requiere modelos capaces de representar la autocorrelacion inherente al
proceso, garantizando estimaciones mas precisas y consistentes en areas sin esta-
ciones meteoroldgicas.
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Definicién 1 (Proceso espacio-temporal). Un proceso espacio-temporal es
un proceso estocédstico denotado por

{Z(s,t) : (s,t) € Dy x Dr},

donde D, C R? representa el conjunto indice correspondiente a la ubicacién espacial
s, vy Dp C R es el conjunto indice asociado al tiempo ¢. Por lo tanto, cada par (s, t)
pertenece al dominio espacio-temporal R x R, y el producto Dy x Dy C R4 x R
constituye el dominio indice completo del proceso.

Los conjuntos Dy y D7 pueden ser continuos o discretos, fijos o aleatorios, segin
el fenémeno bajo estudio y el disefio de muestreo disponible. Este marco general
permite modelar variables que presentan variacién simultdnea en el espacio y en el
tiempo, incorporando su estructura conjunta de dependencia.

Definicién 2 (Proceso espacial). Sea Z la variable de interés, y sea s la
ubicacion espacial donde existe Z. Asi, el proceso espacial es el proceso estocastico

{Z(s) : s € D},

donde D, estda formado por todas las ubicaciones s y es su conjunto indice. La
ubicacion espacial s puede estar en una, dos o mas dimensiones. Cuando s es un
vector, al proceso espacial se le suele llamar campo aleatorio. Vease con mas detalle
en el siguiente cuadro.

ID | Spatial location | t
A 51 = (x1,41) t
B s = (72, Y2) [
C s3 = (3,93) i3
D 54 = (74, Ya) t4
E s5 = (5,Ys) ls

CUADRO 1. Notacién para las coordenadas espacio—temporales de
un proceso espacio-tiempo.

Definicién 3 (Proceso temporal). Sea Z la variable de interés, y sea ¢ el
momento del tiempo en el que ocurre Z. Asi, el proceso temporal es el proceso
estocéstico

{Z(t):t € Dr},
donde Dy C R es el conjunto de todos los tiempos y constituye su conjunto indice.

Asi, tanto el proceso espacial como el proceso temporal son casos particulares
del proceso espacio—tiempo. El conjunto indice de un proceso temporal tiene una
sola dimensién. Sin embargo, uno de los objetivos principales en este caso es en-
contrar prondsticos, lo que en general difiere de los objetivos perseguidos con datos
espaciales.

Clases de datos espaciales

Los métodos estadisticos aplicados a datos espaciales varian segiin las caracteristicas
del dominio espacial o conjunto indice D,. A partir de estas caracteristicas, surgen
tres grandes ramas de la estadistica espacial: geoestadistica, datos de area y
procesos espaciales puntuales.
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Geoestadistica. Es el conjunto de métodos aplicados a datos espaciales con
variaciéon continua, donde D, es un subconjunto fijo de R?; esto es, D, es continuo y
fijoy Z(s) es una variable aleatoria con ubicacién s, (s € Dy). puede ser observada
en cualquier punto del dominio. Este enfoque es apropiado para fenémenos que
pueden considerarse como campos continuos, tales como precipitacion, temperatura
o humedad del suelo.

Datos de area. Son los datos espaciales con variacién espacial discreta. Dy es
un subconjunto contable y fijo de R?; esto es, D, es discreto y fijo y Z(s) es una
variable aleatoria con ubicacién s, (s € Ds).

Procesos espaciales puntuales. En esta categoria, las observaciones no se re-
gistran en puntos fijos, sino que corresponden a la ubicacién donde ocurre un evento
de interés. El conjunto X es un conjunto de puntos definidos en un subconjunto
generalmente aleatorio de R?. Estos procesos modelan fenémenos como sismos, in-
cendios, delitos o eventos bioldgicos registrados mediante su localizacién.

En este trabajo se hara énfasis en la geoestadistica, debido a que la precipitacién
presenta variacién continua en el espacio.

Geoestadistica

El valor observado en cada punto s = (x;,y;) se considera como la realizacién
z(s), de una variable aleatoria Z(s). En términos matematicos, la familia de todas
estas variables aleatorias se denomina una funcion aleatoria, proceso estocastico
o campo aleatorio. Un campo aleatorio es caracterizado por su distribucién de
probabilidad finito dimensional, es decir, la distribucién de probabilidad conjunta
de un conjunto de variables Z(s1), Z(s2),...,Z(sy) para todo n y para todos los
puntos s1, S2, - - ., S,. Un proceso estocastico esta dotado de los siguientes elementos:

= Funciéon de distribucién finito dimensional. Para cualesquiera n puntos

S1,82,...,8n, €l vector aleatorio
Z(s1)
Z(s2)
7 = .
Z(sn)

se caracteriza por su funcién de distribucién n-dimensional:
Fsl,sz,.“,sn (Z1, By ey Zn) - P[Z(Sl) S 21, Z(SQ) S By weey Z(Sn) S Zn}-

= Funcion de media. El momento de primer orden es la esperanza matema-
tica definida como:

E[Z(s)] = n(s)
A veces también llamada la funcién de media, la deriva o la tendencia del
proceso.

= Funcién de varianza. La varianza o momento de segundo orden de Z(s)
respecto a pu(s) es:

0> (s) = Var[Z(s)] = E[(Z(s) - (s))’
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(4.9)

En general, estas funciones pueden depender de la posicion s de manera
deterministica.

Funcién de autocovarianza. La autocovarianza de un proceso espacial
Z(s) es en general una funcién de las ubicaciones espaciales s; y s;, con
si,s; € RY, para todo i,j € Z,. La covarianza Cov(Z(s;), Z(s;)) se define
como:

Cov(Z(si), Z(s;)) = C(si,s5) = E[(Z(si) — u(s:))(Z(s5) — u(s;))]
donde C(-) es una funcién definida positiva para garantizar una varianza de
error de predicciéon no negativa. Esto es, para cualquier nimero finito m de

ubicaciones espaciales s1, ss, ..., S;m ¥ cualquier conjunto de ntimeros reales
{a1,a2,...,a,} con m € Zy, C debe satisfacer:

m m

Z Z a,»ajC’(si, Sj) Z 0

i=1 j=1

Nétese que C(s;, s;) = Var(Z(s;)) = o%.

Funcién de autocorrelacién La autocorrelacion de dos de las variables
aleatorias Z(s;) y Z(s;), p(si, s;), definida como:

C(ss,585)

o(si)o(s;)

Es en general una funcién de s; y s;. Esta es la funcién de autocorrelacién
del proceso.

p(8i7 Sj) =

Funcién de semivarianza El semivariograma 7(s;, s;) que se define como:

1 2
S B [(2(s0) — Z(5:))?]

El variograma es por tanto 2y(s;, s;). Aunque, se usan ambos términos indis-
tintamente para referirse a la funcién v(s;, s;). Nétese que el semivariograma
estima la varianza espacial para distancias especificas, por lo tanto es una

funcién positiva.

’Y(siv Sj) =

Supuesto de Estacionariedad

Un proceso es estacionario, si las relaciones entre cualquier subconjunto de puntos
son iguales independientemente del lugar donde residen los puntos en el espacio. La
estacionariedad puede pensarse como la propiedad que posee la funcién aleatoria
de que muchas realizaciones de la misma funcién aleatoria proporcionan la misma
informacion. Se distinguen tres tipos de estacionariedad:

= Estacionariedad fuerte o de primer orden: En términos de funciones

de distribucién.

= Estacionariedad débil o de segundo orden: En términos de los momen-

tos media y covarianza.

= Estacionariedad intrinseca o de incrementos: En términos de media y

varianza de los incrementos del proceso.

Supuesto de isotropia

Si C(+) y/o v(-) son funciones tnicas de la magnitud ||h||, esto es,

Cov (Z(s), Z(s + ) = C(Ihl) y/o 5 Var (Z(s+ ) — Z(s)) = ()
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el proceso posee funcién de covarianza y/o semivarianza isotrépica.

La estacionariedad permite combinar pares de datos con la misma diferencia de
coordenadas, pero si ademads, los vectores de diferencias pueden ser reemplazados
con distancias escalares, por ejemplo una distancia euclidiana, entonces el campo
aleatorio se dice isotrépico. Esto es, la correlacion entre los datos no depende de la
direccién en la que ésta se calcula.

Asi, un campo aleatorio que es estacionario pero no isotrépico se desarrolla de
manera diferente segtin las distintas direcciones del espacio; no solo basta con co-
nocer cuanto estan separados un par de puntos, sino también se necesita conocer la
orientacién de dicha distancia; estos se conocen como campos aleatorios anisotré-
picos. Entonces, hay anisotropia, si la dependencia espacial entre Z(s) y Z(s + h)
es una funcién tanto de la magnitud como de la direccién del vector h.

En términos geométricos, la estacionariedad y la isotropia son propiedades de
invarianza; la estacionariedad es invarianza bajo traslacion y la isotropia es inva-
rianza bajo rotaciones y reflexiones.

Semivariograma

El semivariograma es una funciéon que describe cémo cambia la variabilidad espacial
de una variable conforme aumenta la distancia entre dos ubicaciones.

El semivariograma 7(h) se define como la funcién de varianza de la variable
incrementos, es decir:

~v(h) = %Var (Z(s+h) — Z(s))

Es por esto que, el semivariograma de un proceso estacionario de segundo orden
es de soporte compacto o tiene una asintota en C(0) cuando se incrementa la
separacion de los puntos. Si el semivariograma no se estabiliza, sino que continta
creciendo, la varianza de la variable incrementos no es finita, pero atn puede ser al
menos intrinsecamente estacionario si cumple que:

~(h
( g — 0 cuando h — o0
[[7]
Esto es, el semivariograma no debe crecer mas rapido que una ecuacién de segundo

grado.
Los parametros de los cuales depende un semivariograma de un proceso estacio-
nario de segundo orden son los siguientes (ver figura 1):

Silla: Es la cota superior de la semivarianza o la asintota superior del semiva-
riograma. Unicamente los procesos estacionarios de segundo orden tienen silla. En
estos casos la silla es C'(0); también es conocida como meseta.

Rango: Es la distancia a la cual los puntos ya no se consideran correlacionados
espacialmente. Los puntos separados por una distancia inferior al rango se conside-
ran espacialmente correlacionados; observaciones espaciadas por mas que el rango
se consideran independientes o al menos aproximadamente independientes. Algunos
procesos alcanzan correlacién cero solo asintéticamente, mientras que otros tienen
un rango finito.

Efecto pepita: De la definicién de semivariograma, se puede ver que para h = 0,
deberia ocurrir que y(h) = 0. Sin embargo, en general se presenta el comportamiento
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observado en la Figura 1, existiendo una discontinuidad en el origen, v(h) — ¢g
cuando h — 0.

silla P e T e o S,

Semivarianza

rango
distancia

Ficura 1. Pepita, silla y rango en presencia de estacionariedad
de segundo orden.

Como el semivariograma 7y (h) es la varianza de la variable incrementos, como se
muestra en (1), un estimador muy natural es el conocido como el estimador cldsico,
y consiste de la estimacion de esta varianza por el método de los momentos:

S(h) = —— s — Z(s))? d

donde
N(h) ={(si,s5) : 8i —s; = h}.

N(h) es el conjunto de todos los pares de ubicaciones cuya separaciéon corres-
ponde a un vector h y |N(h)| es el cardinal de N(h).

Una vez definida la estructura matematica del semivariograma y descritos sus
pardmetros fundamentales (pepita, silla y rango), es necesario introducir los mode-
los tedricos que permiten ajustar el semivariograma experimental obtenido a partir
de los datos.

Los modelos tedricos son funciones validas que cumplen las propiedades de no
negatividad y definida-positividad, y que representan distintos comportamientos de
la variabilidad espacial. Su seleccién es un paso esencial para la posterior aplicacién
de métodos de interpolacién como el Kriging. Algunos modelos capturan estructuras
suaves, otros representan comportamientos asintoticos, y algunos permiten incluso
patrones oscilatorios.

La Figura 2 ilustra varios de los modelos teéricos mas

Estos modelos permiten capturar diferentes formas de dependencia espacial y se-
ran evaluados en la fase de modelacién para seleccionar aquel que mejor reproduzca
la estructura observada en los datos de precipitacién.
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FicuraA 2. Ejemplos de modelos teéricos de semivariograma.

Una vez definido y modelado el semivariograma, se cuenta con la estructura ne-
cesaria para realizar prediccién espacial. Con este modelo como base, se introduce
el método de Kriging, que permite estimar valores en puntos no muestreados de
manera optima.

Kriging

Uno de los objetivos principales del analisis estadistico de datos espaciales en
dominio continuo es la prediccion en lugares no muestreados. Asi, se ha observado
el campo aleatorio

{Z(s):s € D CcR%}

en las ubicaciones si,ss,...,S, v se desea predecir la variable aleatoria espacial
no observada Z(sg) con base en los valores observados z(s1), 2(s2), ..., 2(s,) utili-
zando su estructura de autocorrelacion espacial. Aunque existen muchos metodos
deterministicos para obtener valores en lugares no muestreados, usar los metodos
estadisticos de prediccion espacial presentan una gran ventaja y es que ademas de
la prediccién se obtiene la estimacion de la varianza del error de prediccion, En
particular el predictor kriging es insesgado y de minima varianza. Los mapas de
prediccion generados con kriging se acompanan, de los respectivos mapas de resi-
duos para poder determinar cuales zonas tienen predicciones mas precisas. Ademas,
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se usan las medidas generales para calidad de prediccion, tales como los estadisti-
cos de los residuos, el MAPE, el CME, el coeficiente de correlacion lineal entre los
valores observados y sus respectivas predicciones.

Se requiere una forma de predecir valores en puntos intermedios o en el caso de
bloques, por ejemplo, estimar el promedio sobre el bloque. La precision del predictor
usado depende de varios factores:

» El numero de muestras tomadas. Debido a la existencia de autocorrelacion,
los datos espacio temporales presentan redundancia. Por lo tanto, una mues-
tra de tamano n de datos independientes tiene mayor cantidad de informa-
cion que una muestra de tamafio n de datos autocorrelacionados.

= La calidad de la medicion en cada punto. Aunque el pardmetro conocido
como efecto pepita permite cuantificar el error de medicion, esto aumenta
la incertidumbre en el modelo de dependencia espacial y por lo tanto en la
prediccion.

= Las ubicaciones de las muestras en la zona; si las muestras son tomadas de
acuerdo a un diseno de muestreo optimo los resultados son mucho mejores,
las predicciones son mas precisas ya que la varianza es menor, se evita la
redundancia espacial y ademas se optimizan los recursos.

Kriging ordinario

El kriging ordinario se usa cuando la variable es al menos estacionaria intrinseca
y tiene media constante pero desconocida. Es decir, se asume que el proceso espacial
se puede descomponer de la siguiente forma:

Z(s) = p+e(s) seD
Donde E[Z(s)] = 1 Vs € D, u € R pero es necesario estimarla y por lo tanto no
se puede trabajar directamente con la variable centrada.

E (Z AiZ(Si)> = E(Z(s0))
=1

Tomando esperanzas se obtiene:

n
> Aip=p
=1

De donde se concluye que para que se cumpla la propiedad de insesgamiento se
requiere que:

i=1

Kriging Universal
Sea el modelo geoestadistico

Z(s) = p(s) +¢(s)

y E(e(s)) = 0. Se conoce como kriging universal al caso en el que p(s) es desconocida
y localmente puede expresarse como una combinacion lineal de funciones fi(s). Es
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decir, la media en general es es una combinacion lineal de términos de la forma
zPy?, p,q € N. Esto es:

pls) =D Bufu(s) 5= (z,y)
k=1

Por ejemplo, si el modelo para la media es: u(s) = 51 + B2 + B3y
fi(s) =1, f2(s) =z, fa(s) =y.

El predictor es el usual, y lo expresamos en términos de la media:

Z*(s0) = > NiZ(si)
i=1

.k \
Z%(s0) =D MY Befulsi) + > Nie(si)
=1 k=1 i=1
n K
E(Z*(s0)) = E (Z i Bkmsi))
=1 k=1

Ahora, para garantizar el insesgamiento se requiere que
E(Z*(s0) — Z(s0)) =0

Entonces,
I <zn: /\iZ(si)> — B(Z(s0))
Asi, -
Z Aen(s) = p(so)

Reemplazando la expresion de la media:

n K K
DAY Brfulsi) = Brtu(so)
1 k=1

=1 k=

K n K
D Bk Nifwl(si) = Brfr(so)
k=1 =1 k=1

Z:)\ifk(si)ka(so)7 k=1,...,K
i=1

Restricciones
Z:/\ifk(si)ka(so)7 k=1,...,K
i=1

La expresién a minimizar queda:

K

Q=E(Z"(s0) — Z(50))> =2 0 | Y Nifw(s;) = fu(s0)
J=1

k=1
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sujeta a las restricciones:
n
Z)\ifk(sz'):fk(so)7 k=1,....K
i=1

Por ejemplo para k =1,

ALfi(s1) + A2 fi(s2) + -+ Anfi(sn) = fi(s0)

En general:

n K
Z)\j’y(si—sj)+z5kfk(si)=’y(si—so), i=1,...,n
j=1 k=1

Las ecuaciones generales del kriging universal en términos del semivariograma y

en forma matricial estan dadas por:

Y11 Y12 0 Vin f11 f21 f}( M\ ’7(51 - So)
Yo1 Y2 v Yen STOf5 o [ Ay v(s2 — s0)
Ynl Tn2 " Tnn {L EL o f[yé )\ _ 'Y(Sn — 50)
S G N BT I I
fo f5 -~ f3 0 0 - 0 i f3
: . 5 0 0 .- 0 5 :
fx f& oo fF 0 0 - 0 K [

Se evidencia el requerimiento de que las fj sean linealmente independientes:
K
chfk(si) =0<=¢,=0,k=1,... . K

La varianza del Kriging Universal queda:

E(Z*(sp) — = 22)\17 i — S0) ZZA Ajv(si — s;5)

=1 j5=1
Sustituyendo:
K
E(Z"(s0) — ZAN i = s0)+ Y 0kfr(so)
k=1
Note que si K =1y fi(s) = 1:
E(Z*(s0) — Z Aiv(si — s0) + 0,

y se obtiene la varianza del kriging ordlnarlo como un caso particular.
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Cokriging

El cokriging consiste en encontrar predicciones de una variable de interes en un
lugar sg utilizando la informacion dada por covariables. No es indispensable que
tanto la variable de interes como las covariables sean medidas en el mismo lugar.

ni ng
Zf(Zl, Zg; So) = Z )\1¢Z1(Sz’> + Z )\QjZQ(Sj) = )\?Zl (S) + )\(Q)ZQ(S)
i=1 j=1

Supuestos
E[Z1(s)] = m

E[Z5(s)] = pa, Vs e D

COV(Zl (8)7 Zl<8 + h)) = Cl (h)
COV(ZQ(S)7 Z2<5 + h)) = Cg(h)

COV(Z1 (8), ZQ(S + h)) = Clg(h)

Hasta ahora se ha llevado a cabo la prediccion espacial de un proceso Z(s)
utilizando unicamente su propia informacion. Sin embargo, los fenomenos del mundo
real son en general multivariados. Este capitulo describe como llevar a cabo la
prediccion espacial de un proceso Z1(s¢) utilizando su propia informacion, asi como
la de covariables que se encuentren espacialmente correlacionadas con este, esto es,
utilizando Z1(s), ..., Zp(s). Este método es conocido como cokriging.

Para la aplicacion de este método no es necesario que todas las variables esten
medidas en las mismas ubicaciones espaciales. Si todos los datos se encuentran
medidos en la misma grilla de n ubicaciones espaciales, los datos son P x 1-vectores
que forman una matriz n x P , con (i,j)-ésimo elemento Z,(s;), ¢ = 1,...,n,
p=1,...,P. La i-esima fila de la matriz de datos corresponde a las mediciones de
todas las variables en la ubicacion s;:

Z(si) = (Z1(s0), Za(si), - - Zp(s:)"
El interes es predecir el vector

Z(So) = (21(50)7 ey ZP(So))ﬁ

La prediccion es realizada para una variable a la vez.

Si todas las variables son medidas en las mismas n ubicaciones la matriz de
covarianza completa Cov(Z) = X con todas las variables y ubicaciones observadas
es

Y(s1,81) X(s1,82) -+ X(s1,8n)
5 Y(s2,81) X(s2,82) -+ X(s2,8n)
S(sny81) X(Sn,82) -+ X(sn,Sn)

La cual debe ser una matriz definida positiva, Vease con mas detalle en ([Bohérquez, 2024]).
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5. EJEMPLOS

5.1. Ejemplos ilustrativo de Métodos de Correccion de Sesgo y Mé-
tricas. Con el fin de ilustrar el procedimiento de correcciéon de sesgo aplicado a
productos satelitales de precipitacion, se construy6 un ejemplo simulado utilizando
una serie mensual de longitud n = 120. La precipitacién observada se gener6 me-
diante una distribucién Gamma con pardmetros shape = 2 y rate = 1/80 (media
~ 160 mm), mientras que la serie satelital se definié6 como Psy; = 1,2 Pops + €, con
e ~ N(0,20%), reproduciendo una sobreestimacién sistemética tipica de algunos
productos satelitales.

Para evaluar el desempernio del satélite se calcularon cinco métricas: BIAS, MAE,
RMSE, la correlacién temporal () y la eficiencia de Nash—Sutcliffe (NSE). Los
resultados iniciales mostraron un sesgo positivo elevado y errores significativamente
superiores a los de la serie observada, aunque con una correlaciéon temporal alta.

A la serie satelital se le aplicaron tres métodos de correccién: Linear Scaling
(LS), Power Transformation (PT) y Quantile Mapping (QM). LS eliminé casi por
completo el sesgo medio; PT produjo mejoras similares mediante un ajuste no li-
neal; y QM ofrecié el mejor rendimiento global al corregir tanto la media como la
forma de la distribucién, reduciendo MAE y RMSE y mejorando la NSE.

Evaluacion antes y después de la correccion de sesgo. El cuadro 2 resume el de-
sempeno de la serie satelital antes y después de aplicar los métodos de correccion.
La serie original presenta un sesgo positivo considerable (BIAS = 27.64 mm), lo
que indica una sobreestimacion sisteméatica respecto a la precipitacién observada.
Tanto el MAE (31.77 mm) como el RMSE (38.72 mm) muestran errores elevados,
aunque la correlacién temporal es muy alta (r & 0,98), sefial de que la variabilidad
temporal estd bien representada. La eficiencia de Nash—Sutcliffe (NSE = 0.81) con-
firma una capacidad predictiva moderada.

Tras aplicar el método Linear Scaling (LS), el sesgo se reduce practicamente
a cero y los errores disminuyen de forma notable (MAE = 14.66 mm; RMSE =
17.99 mm), manteniendo la misma correlacién. De forma similar, la Power Trans-
formation (PT) elimina el sesgo y mejora significativamente los errores, obteniendo
valores comparables a los de LS.

Por otro lado, el método Quantile Mapping (QM) alcanza la discrepancia pro-
medio mds baja (MAE = 13.99 mm), ajustando mejor la distribucién de los datos y
conservando una correlacion elevada (r ~ 0,98), aunque mantiene un sesgo residual
pequefio (BIAS = 1.93 mm).

En conjunto, los tres métodos mejoran de manera importante la representacién
de la precipitacion, siendo LS y PT los mas efectivos para corregir el sesgo medio,
mientras que QM proporciona el mejor ajuste de la distribucién al lograr el MAE
mas bajo. Estos resultados demuestran la eficacia de las técnicas de correccién de
sesgo para mejorar productos satelitales como CHIRPS.

La Figura 3 presenta los diagramas de dispersion entre la precipitacion observada

v las distintas versiones de la serie satelital: original y corregidas mediante Linear
Scaling (LS), Power Transformation (PT) y Quantile Mapping (QM).
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Métrica Original LS PT QM

BIAS (mm) 27.64 0.02 0.01 1.93

MAE (mm) 31.77 14.66 15.02 13.99

RMSE (mm) 38.72 17.99 1844 17.21

r 0.98 098 098 0.98

NSE 0.81 0.94 093 0.95
CUADRO 2. Métricas antes y después de la correccion de sesgo

En el panel correspondiente a la serie satelital original, se aprecia una disper-
sion considerable y una tendencia sistemética por encima de la linea de referencia,
reflejando la sobreestimacién capturada por el BIAS positivo. Tras aplicar LS, los
puntos se acercan notablemente a la diagonal, lo que indica que el ajuste de esca-
la corrige efectivamente el sesgo medio. La transformacién PT produce un patrén
similar, con una alineacién estrecha a lo largo de toda la distribucién.

Por su parte, el método QM genera la mayor adherencia a la linea 1:1, mostran-
do una correccién més completa que abarca tanto la media como la forma de la
distribucién. Los puntos se distribuyen de manera més compacta y cercana a la
diagonal, especialmente en los valores medios y altos de precipitacién.

En conjunto, la figura evidencia que todos los métodos mejoran la corresponden-
cia entre ambas series, siendo QM el que logra la correccién méas uniforme sobre
toda la gama de valores.

Dispersion: Observada vs CHIRPS (criginal y corregida)
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Ficura 3. Diagramas de dispersién entre la precipitaciéon obser-

vada y la satelital, antes y después de aplicar cada método de
correccién (LS, PT y QM).

Las Figuras 4, 5 y 6 muestran la comparacién temporal entre la serie observada y
las versiones corregidas del producto satelital mediante los métodos Linear Scaling
(LS), Power Transformation (PT) y Quantile Mapping (QM), respectivamente.
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En el caso de Linear Scaling, la serie corregida reproduce con gran fidelidad la
dinamica temporal de la precipitacién, ya que el método ajusta inicamente la escala
y conserva la forma original de la serie satelital. Esto se refleja en una alineacién
estrecha entre ambas curvas a lo largo de todo el periodo.

El método Power Transformation produce un comportamiento similar, mante-
niendo la coherencia temporal pero aplicando un ajuste adicional segtin el parametro
de potencia A, lo que permite modificar levemente la forma de los valores extremos.

Por su parte, Quantile Mapping muestra la mayor correspondencia con la serie
observada, ya que corrige no solo la media y la escala sino también la distribucién
completa. Esto se evidencia en una coincidencia méas precisa de los picos altos y de
los valores bajos de precipitacion.

En conjunto, las tres graficas confirman visualmente la mejora lograda con los
distintos métodos de correccién, siendo QM el que presenta el ajuste méas completo
en términos de magnitud y comportamiento temporal.

Obs vs Sat vs Linear Scaling

Precipitacién
ra (%) =y o
(=] (=] (=] (=]
(=] (=] (=] (=]

-y
o
o

o

0 25 50 75 100 125
Tiempo

Serie — obs — sat — sat_ls

FicUurA 4. Comparacién temporal entre la precipitacion observa-
da, satelital y corregida mediante Linear Scaling.

175



Obs vs Sat vs Power Transformation
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FiguraA 5. Comparacién temporal entre la precipitacién observa-
da, satelital y corregida mediante Power Transformation.

Obs vs Sat vs Quantile Mapping
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FicurA 6. Comparaciéon temporal entre la precipitacién observa-
da, satelital y corregida mediante Quantile Mapping.

5.2. Ejemplo ilustrativo Método Kriging con datos simulados. Con el ob-
jetivo de mostrar de forma clara el procedimiento de interpolacién espacial aplicado
en este estudio, se desarrollé un ejemplo utilizando datos simulados. Se generaron
15 estaciones ubicadas dentro del rango geografico aproximado de Honduras y se
asignaron valores de precipitacion simulada mediante una distribucién Gamma con
pardmetros shape = 2y scale = 60 (equivalente a rate = 1/60). Esta parametriza-
cién produce valores positivos y una dispersiéon amplia, con una media cercana a
120 mm, lo cual resulta adecuado para representar variabilidad tipica de precipi-
taciones intensas. Aunque los datos no corresponden a mediciones reales, permiten
visualizar de manera fiel el flujo de modelacion utilizado en el andlisis principal.
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5.3. Semivariograma experimental y seleccién del modelo. Tras trans-
formar las coordenadas geograficas al sistema UTM Zona 16N, se construyé el
semivariograma experimental para describir la variabilidad espacial de la precipita-
cién simulada. El semivariograma mostré un aumento rapido de la dispersiéon para
distancias cortas, seguido de una estabilizacién progresiva al incrementarse la dis-
tancia. Este patron es caracteristico de procesos que presentan correlacion espacial
hasta un rango finito.

Con base en este comportamiento, se ajustaron varios modelos teéricos (Expo-
nencial, Gaussiano y Esférico). El modelo esférico presenté el ajuste més coherente,
ya que:

= reproduce adecuadamente el incremento inicial de variabilidad,

= captura la meseta (sill) observada en el semivariograma experimental,

= y presenta un rango consistente con la separacién méxima entre las estaciones
simuladas.

La Figura 7 muestra el semivariograma experimental junto con el modelo esférico
ajustado, evidenciando su adecuacién para este ejemplo.
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FiGURA 7. Semivariograma experimental y modelo esférico ajus-
tado para los datos simulados.

5.4. Aplicacion del Kriging Ordinario. Una vez seleccionado el modelo es-
férico y definido el grid de interpolacion, se aplicé Kriging Ordinario para obtener
la superficie continua de precipitacién simulada. El resultado (Figura 8) muestra
una distribucién espacial claramente diferenciada por intervalos de valores, los cua-
les aparecen en la leyenda del mapa. Estos rangos corresponden a la precipitacion
predicha en milimetros y abarcan desde aproximadamente 30 mm hasta cerca de
335 mm.
En el mapa se observan cinco clases de color, cada una asociada a un intervalo
especifico:
= Azul oscuro (30-91 mm): representa las zonas con la precipitacién esti-
mada mas baja, generalmente influenciadas por estaciones que en los datos
simulados tenian valores pequenos.
= Morado (91-152 mm): indica valores bajos a moderados, formando una
transicion alrededor de las zonas maés frias.
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= Rosado (152—213 mm): corresponde a valores intermedios de precipitacién
y cubre gran parte de la superficie, reflejando la suavidad tipica del kriging.

» Naranja (213-273 mm): identifica regiones donde el modelo predice pre-
cipitaciones relativamente altas.

= Amarillo (273—-334 mm): marca los valores méximos predichos, ubicados
en areas cercanas a estaciones con altos valores simulados.

Cada nicleo o mancha circular de color corresponde a la zona de influencia de
una estacion, lo cual es caracteristico del Kriging cuando se trabaja con un conjun-
to reducido de puntos. Las transiciones entre colores son suaves, lo que confirma
que la interpolacion respeta la estructura espacial definida por el semivariograma
ajustado: la prediccién coincide estrechamente con los valores de las estaciones en
zonas cercanas y se suaviza progresivamente a medida que aumenta la distancia.

En conjunto, la figura evidencia que el modelo geoestadistico genera una super-
ficie continua, coherente y estructuralmente consistente con los datos simulados,
permitiendo identificar con claridad zonas de mayor y menor precipitacién dentro
del area evaluada.

Kriging prediccion

Latitud

Longitud
* [30.76,91.55]

(91.55,152.3]
(152.3.213.1]
(213.1.273.9]
(273.9,334.7]

*

Ficura 8. Prediccién de precipitacién obtenida mediante Kriging
Ordinario en el ejemplo simulado.
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6. CONCLUSIONES

El analisis geoestadistico realizado con datos simulados permitié verificar la co-
herencia del proceso de construccion y ajuste del semivariograma, asi como la ido-
neidad del modelo esférico seleccionado. El semivariograma experimental presentd
una meseta en torno a 12000 mm? y un rango aproximado de 30000 metros, pa-
rametros que permitieron generar mediante Kriging Ordinario una superficie de
prediccién suave y espacialmente consistente con la disposicién de las estaciones
simuladas. Este resultado demuestra la estabilidad y representatividad del enfoque
utilizado.

Complementariamente, el ejemplo de correccién de sesgo mostré que los métodos
LS, PT y QM mejoran sustancialmente la correspondencia entre la precipitacién
satelital y la observada, reduciendo el sesgo y los errores asociados, y preservando la
estructura temporal de la serie. Entre ellos, Quantile Mapping destacé por ofrecer la
correccion mas completa al ajustar tanto la media como la forma de la distribucion.

En conjunto, ambos ejercicios ilustran de manera clara la validez de los proce-
dimientos empleados en esta investigacion, tanto para la modelacion espacial me-
diante kriging como para la correccién estadistica de productos satelitales, lo que
respalda su aplicacién sobre datos reales en el andlisis principal.
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